Crystal Structure of 4-Sulfatase (human)

Experimental Data Snapshot

  • Resolution: 2.50 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.188 

wwPDB Validation   3D Report Full Report

This is version 2.0 of the entry. See complete history


Structure of a human lysosomal sulfatase.

Bond, C.S.Clements, P.R.Ashby, S.J.Collyer, C.A.Harrop, S.J.Hopwood, J.J.Guss, J.M.

(1997) Structure 5: 277-289

  • DOI: https://doi.org/10.1016/s0969-2126(97)00185-8
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 

    . Sulfatases catalyze the hydrolysis of sulfuric acid esters from a wide variety of substrates including glycosaminoglycans, glycolipids and steroids. There is sufficient common sequence similarity within the class of sulfatase enzymes to indicate that they have a common structure. Deficiencies of specific lysosomal sulfatases that are involved in the degradation of glycosamino-glycans lead to rare inherited clinical disorders termed mucopolysaccharidoses. In sufferers of multiple sulfatase deficiency, all sulfatases are inactive because an essential post-translational modification of a specific active-site cysteine residue to oxo-alanine does not occur. Studies of this disorder have contributed to location and characterization of the sulfatase active site. To understand the catalytic mechanism of sulfatases, and ultimately the determinants of their substrate specificities, we have determined the structure of N-acetylgalactosamine-4-sulfatase. . The crystal structure of the enzyme has been solved and refined at 2.5 resolution using data recorded at both 123K and 273K. The structure has two domains, the larger of which belongs to the alpha/beta class of proteins and contains the active site. The enzyme active site in the crystals contains several hitherto undescribed features. The active-site cysteine residue, Cys91, is found as the sulfate derivative of the aldehyde species, oxo-alanine. The sulfate is bound to a previously undetected metal ion, which we have identified as calcium. The structure of a vanadate-inhibited form of the enzyme has also been solved, and this structure shows that vanadate has replaced sulfate in the active site and that the vanadate is covalently linked to the protein. Preliminary data is presented for crystals soaked in the monosaccharide N-acetylgalactosamine, the structure of which forms a product complex of the enzyme. . The structure of N-acetylgalactosamine-4-sulfatase reveals that residues conserved amongst the sulfatase family are involved in stabilizing the calcium ion and the sulfate ester in the active site. This suggests an archetypal fold for the family of sulfatases. A catalytic role is proposed for the post-translationally modified highly conserved cysteine residue. Despite a lack of any previously detectable sequence similarity to any protein of known structure, the large sulfatase domain that contains the active site closely resembles that of alkaline phosphatase: the calcium ion in sulfatase superposes on one of the zinc ions in alkaline phosphatase and the sulfate ester of Cys91 superposes on the phosphate ion found in the active site of alkaline phosphatase.

  • Organizational Affiliation

    Department of Biochemistry, University of Sydney, NSW 2006 Australia.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
N-ACETYLGALACTOSAMINE-4-SULFATASE492Homo sapiensMutation(s): 0 
Gene Names: G4S
UniProt & NIH Common Fund Data Resources
Find proteins for P15848 (Homo sapiens)
Explore P15848 
Go to UniProtKB:  P15848
PHAROS:  P15848
GTEx:  ENSG00000113273 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP15848
Sequence Annotations
  • Reference Sequence


Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
B, C
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
Query on ALS
Experimental Data & Validation

Experimental Data

  • Resolution: 2.50 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.188 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 107α = 90
b = 107β = 90
c = 144.83γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
X-PLORmodel building

Structure Validation

View Full Validation Report

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-02-04
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2015-12-02
    Changes: Non-polymer description
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Database references, Derived calculations, Structure summary