Primary Citation of Related Structures:   1E18
PubMed Abstract: 
DMSO reductase (DMSOR) from Rhodobacter capsulatus, well-characterised as a molybdoenzyme, will bind tungsten. Protein crystallography has shown that tungsten in W-DMSOR is ligated by the dithiolene group of the two pyranopterins, the oxygen atom of Ser147 plus another oxygen atom, and is located in a very similar site to that of molybdenum in Mo-DMSOR ...
DMSO reductase (DMSOR) from Rhodobacter capsulatus, well-characterised as a molybdoenzyme, will bind tungsten. Protein crystallography has shown that tungsten in W-DMSOR is ligated by the dithiolene group of the two pyranopterins, the oxygen atom of Ser147 plus another oxygen atom, and is located in a very similar site to that of molybdenum in Mo-DMSOR. These conclusions are consistent with W L(III)-edge X-ray absorption, EPR and UV/visible spectroscopic data. W-DMSOR is significantly more active than Mo-DMSOR in catalysing the reduction of DMSO but, in contrast to the latter, shows no significant ability to catalyse the oxidation of DMS.