1DQI

CRYSTAL STRUCTURE OF SUPEROXIDE REDUCTASE FROM P. FURIOSUS IN THE OXIDIZED STATE AT 1.7 ANGSTROMS RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.203 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states.

Yeh, A.P.Hu, Y.Jenney Jr., F.E.Adams, M.W.Rees, D.C.

(2000) Biochemistry 39: 2499-2508

  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Superoxide reductase (SOR) is a blue non-heme iron protein that functions in anaerobic microbes as a defense mechanism against reactive oxygen species by catalyzing the reduction of superoxide to hydrogen peroxide [Jenney, F. E., Jr., Verhagen, M. F. ...

    Superoxide reductase (SOR) is a blue non-heme iron protein that functions in anaerobic microbes as a defense mechanism against reactive oxygen species by catalyzing the reduction of superoxide to hydrogen peroxide [Jenney, F. E., Jr., Verhagen, M. F. J. M., Cui, X. , and Adams, M. W. W. (1999) Science 286, 306-309]. Crystal structures of SOR from the hyperthermophilic archaeon Pyrococcus furiosus have been determined in the oxidized and reduced forms to resolutions of 1.7 and 2.0 A, respectively. SOR forms a homotetramer, with each subunit adopting an immunoglobulin-like beta-barrel fold that coordinates a mononuclear, non-heme iron center. The protein fold and metal center are similar to those observed previously for the homologous protein desulfoferrodoxin from Desulfovibrio desulfuricans [Coelho, A. V., Matias, P., Fülöp, V., Thompson, A., Gonzalez, A., and Carrondo, M. A. (1997) J. Bioinorg. Chem. 2, 680-689]. Each iron is coordinated to imidazole nitrogens of four histidines in a planar arrangement, with a cysteine ligand occupying an axial position normal to this plane. In two of the subunits of the oxidized structure, a glutamate carboxylate serves as the sixth ligand to form an overall six-coordinate, octahedral coordinate environment. In the remaining two subunits, the sixth coordination site is either vacant or occupied by solvent molecules. The iron centers in all four subunits of the reduced structure exhibit pentacoordination. The structures of the oxidized and reduced forms of SOR suggest a mechanism by which superoxide accessibility may be controlled and define a possible binding site for rubredoxin, the likely physiological electron donor to SOR.


    Related Citations: 
    • Anaerobic Microbes: Oxygen Detoxification Without Superoxide Dismutase
      Jenney Jr., F.E.,Verhagen, M.F.,Cui, X.,Adams, M.W.W.
      (1999) Science 286: 306


    Organizational Affiliation

    Division of Chemistry and Chemical Engineering, 147-75CH, California Institute of Technology, Pasadena, California 91125, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
SUPEROXIDE REDUCTASE
A, B, C, D
124Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1)Mutation(s): 0 
Gene Names: sorA
EC: 1.15.1.2
Find proteins for P82385 (Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1))
Go to UniProtKB:  P82385
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FE
Query on FE

Download SDF File 
Download CCD File 
A, B, C, D
FE (III) ION
Fe
VTLYFUHAOXGGBS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.203 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 49.662α = 90.00
b = 93.191β = 90.00
c = 99.505γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
X-PLORrefinement
AMoREphasing
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2000-05-10
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance