1C88

CRYSTAL STRUCTURE OF PROTEIN TYROSINE PHOSPHATASE 1B COMPLEXED WITH 2-(OXALYL-AMINO)-4,5,6,7-TETRAHYDRO-THIENO[2,3-C]PYRIDINE-3-CARBOXYLIC ACID


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B.

Iversen, L.F.Andersen, H.S.Branner, S.Mortensen, S.B.Peters, G.H.Norris, K.Olsen, O.H.Jeppesen, C.B.Lundt, B.F.Ripka, W.Moller, K.B.Moller, N.P.

(2000) J Biol Chem 275: 10300-10307

  • DOI: 10.1074/jbc.275.14.10300
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Several protein-tyrosine phosphatases (PTPs) have been proposed to act as negative regulators of insulin signaling. Recent studies have shown increased insulin sensitivity and resistance to obesity in PTP1B knockout mice, thus pointing to this enzyme ...

    Several protein-tyrosine phosphatases (PTPs) have been proposed to act as negative regulators of insulin signaling. Recent studies have shown increased insulin sensitivity and resistance to obesity in PTP1B knockout mice, thus pointing to this enzyme as a potential drug target in diabetes. Structure-based design, guided by PTP mutants and x-ray protein crystallography, was used to optimize a relatively weak, nonphosphorus, nonpeptide general PTP inhibitor (2-(oxalyl-amino)-benzoic acid) into a highly selective PTP1B inhibitor. This was achieved by addressing residue 48 as a selectivity determining residue. By introducing a basic nitrogen in the core structure of the inhibitor, a salt bridge was formed to Asp-48 in PTP1B. In contrast, the basic nitrogen causes repulsion in other PTPs containing an asparagine in the equivalent position resulting in a remarkable selectivity for PTP1B. Importantly, this was accomplished while retaining the molecular weight of the inhibitor below 300 g/mol.


    Organizational Affiliation

    Protein Chemistry, Novo Nordisk, DK-2880 Bagsvaerd, Denmark. lfiv@novo.dk



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (PROTEIN-TYROSINE PHOSPHATASE 1B)
A
298Homo sapiensMutation(s): 0 
Gene Names: PTPN1PTP1B
EC: 3.1.3.48
Find proteins for P18031 (Homo sapiens)
Go to UniProtKB:  P18031
NIH Common Fund Data Resources
PHAROS  P18031
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
OTA
Query on OTA

Download CCD File 
A
2-(OXALYL-AMINO)-4,5,6,7-TETRAHYDRO-THIENO[2,3-C]PYRIDINE-3-CARBOXYLIC ACID
C10 H10 N2 O5 S
ZIBMATWHOAGNTR-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
OTAKi:  5100   nM  Binding MOAD
OTAKi :  5100   nM  PDBBind
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 88.29α = 90
b = 88.29β = 90
c = 103.75γ = 120
Software Package:
Software NamePurpose
AMoREphasing
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2000-05-03
    Type: Initial release
  • Version 1.1: 2008-04-26
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-03-07
    Changes: Data collection