1B9V

NOVEL AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE MAKE SELECTIVE INTERACTIONS WITH CONSERVED RESIDUES AND WATER MOLECULES IN TEH ACTIVE SITE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.271 
  • R-Value Work: 0.183 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Novel aromatic inhibitors of influenza virus neuraminidase make selective interactions with conserved residues and water molecules in the active site.

Finley, J.B.Atigadda, V.R.Duarte, F.Zhao, J.J.Brouillette, W.J.Air, G.M.Luo, M.

(1999) J.Mol.Biol. 293: 1107-1119

  • DOI: 10.1006/jmbi.1999.3180
  • Primary Citation of Related Structures:  1B9S, 1B9T

  • PubMed Abstract: 
  • The active site of type A or B influenza virus neuraminidase is composed of 11 conserved residues that directly interact with the substrate, sialic acid. An aromatic benzene ring has been used to replace the pyranose of sialic acid in our design of n ...

    The active site of type A or B influenza virus neuraminidase is composed of 11 conserved residues that directly interact with the substrate, sialic acid. An aromatic benzene ring has been used to replace the pyranose of sialic acid in our design of novel neuraminidase inhibitors. A bis(hydroxymethyl)pyrrolidinone ring was constructed in place of the N-acetyl group on the sialic acid. The hydroxymethyl groups replace two active site water molecules, which resulted in the high affinity of the nanomolar inhibitors. However, these inhibitors have greater potency for type A influenza virus than for type B influenza virus. To resolve the differences, we determined the X-ray crystal structure of three benzoic acid substituted inhibitors bound to the active site of B/Lee/40 neuraminidase. The investigation of a hydrophobic aliphatic group and a hydrophilic guanidino group on the aromatic inhibitors shows changes in the interaction with the active site residue Glu275. The results provide an explanation for the difference in efficacy of these inhibitors against types A and B viruses, even though the 11 active site residues of the neuraminidase are conserved.


    Organizational Affiliation

    Center for Macromolecular Crystallography, Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (NEURAMINIDASE)
A
390Influenza B virus (strain B/Lee/1940)Gene Names: NA
EC: 3.2.1.18
Find proteins for P03474 (Influenza B virus (strain B/Lee/1940))
Go to UniProtKB:  P03474
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
RA2
Query on RA2

Download SDF File 
Download CCD File 
A
1-[4-CARBOXY-2-(3-PENTYLAMINO)PHENYL]-5,5'-DI(HYDROXYMETHYL)PYRROLIDIN-2-ONE
C18 H26 N2 O5
BNIJJJRESBVRNB-UHFFFAOYSA-N
 Ligand Interaction
NAG
Query on NAG

Download SDF File 
Download CCD File 
A
N-ACETYL-D-GLUCOSAMINE
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
RA2IC50: 104000 - 271000 nM (99) BINDINGDB
RA2IC50: 224000 nM BINDINGMOAD
RA2IC50: 224000 nM PDBBIND
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.271 
  • R-Value Work: 0.183 
  • Space Group: P 4 21 2
Unit Cell:
Length (Å)Angle (°)
a = 124.702α = 90.00
b = 124.702β = 90.00
c = 71.573γ = 90.00
Software Package:
Software NamePurpose
X-PLORphasing
X-PLORrefinement
SAINTdata scaling
SAINTdata reduction
X-PLORmodel building

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1999-02-27
    Type: Initial release
  • Version 1.1: 2008-04-26
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance