1ADS

AN UNLIKELY SUGAR SUBSTRATE SITE IN THE 1.65 ANGSTROMS STRUCTURE OF THE HUMAN ALDOSE REDUCTASE HOLOENZYME IMPLICATED IN DIABETIC COMPLICATIONS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications.

Wilson, D.K.Bohren, K.M.Gabbay, K.H.Quiocho, F.A.

(1992) Science 257: 81-84

  • DOI: 10.1126/science.1621098
  • Primary Citation of Related Structures:  
    1ADS

  • PubMed Abstract: 
  • Aldose reductase, which catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds, is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney ...

    Aldose reductase, which catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds, is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney. A 1.65 angstrom refined structure of a recombinant human placenta aldose reductase reveals that the enzyme contains a parallel beta 8/alpha 8-barrel motif and establishes a new motif for NADP-binding oxidoreductases. The substrate-binding site is located in a large, deep elliptical pocket at the COOH-terminal end of the beta barrel with a bound NADPH in an extended conformation. The highly hydrophobic nature of the active site pocket greatly favors aromatic and apolar substrates over highly polar monosaccharides. The structure should allow for the rational design of specific inhibitors that might provide molecular understanding of the catalytic mechanism, as well as possible therapeutic agents.


    Organizational Affiliation

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
ALDOSE REDUCTASEA315Homo sapiensMutation(s): 0 
Gene Names: AKR1B1ALDR1ALR2
EC: 1.1.1.21 (PDB Primary Data), 1.1.1.300 (UniProt), 1.1.1.372 (UniProt), 1.1.1.54 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P15121 (Homo sapiens)
Explore P15121 
Go to UniProtKB:  P15121
PHAROS:  P15121
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAP (Subject of Investigation/LOI)
Query on NAP

Download Ideal Coordinates CCD File 
B [auth A]NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE
C21 H28 N7 O17 P3
XJLXINKUBYWONI-NNYOXOHSSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50α = 90
b = 67.12β = 90
c = 92.02γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1993-10-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance