1Z6C

Solution structure of an EGF pair (EGF34) from vitamin K-dependent protein S


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Solution Structure of the Ca(2+)-Binding EGF3-4 Pair from Vitamin K-Dependent Protein S: Identification of an Unusual Fold in EGF3.

Drakenberg, T.Ghasriani, H.Thulin, E.Muranyi, A.Annila, A.Stenflo, J.

(2005) Biochemistry 44: 8782-8789

  • DOI: 10.1021/bi050101f

  • PubMed Abstract: 
  • Vitamin K-dependent protein S is a cofactor of activated protein C, a serine protease that regulates blood coagulation. Deficiency of protein S can cause venous thrombosis. Protein S has four EGF domains in tandem; domains 2-4 bind calcium with high ...

    Vitamin K-dependent protein S is a cofactor of activated protein C, a serine protease that regulates blood coagulation. Deficiency of protein S can cause venous thrombosis. Protein S has four EGF domains in tandem; domains 2-4 bind calcium with high affinity whereas domains 1-2 mediate interaction with activated protein C. We have now solved the solution structure of the EGF3-4 fragment of protein S. The linker between the two domains is similar to what has been observed in other calcium-binding EGF domains where it provides an extended conformation. Interestingly, a disagreement between NOE and RDC data revealed a conformational heterogeneity within EGF3 due to a hinge-like motion around Glu186 in the Cys-Glu-Cys sequence, the only point in the domain where flexibility is allowed. The dominant, bent conformation of EGF3 in the pair has no precedent among calcium-binding EGF domains. It is characterized by a change in the psi angle of Glu186 from 160 degrees +/- 40 degrees , as seen in ten other EGF domains, to approximately 0 degrees +/- 15 degrees . NOESY data suggest that Tyr193, a residue not conserved in other calcium-binding EGF domains (except in the homologue Gas6), induces the unique fold of EGF3. However, SAXS data, obtained on EGF1-4 and EGF2-4, showed a dominant, extended conformation in these fragments. This may be due to a counterproductive domain-domain interaction between EGF2 and EGF4 if EGF3 is in a bent conformation. We speculate that the ability of EGF3 to adopt different conformations may be of functional significance in protein-protein interactions involving protein S.


    Organizational Affiliation

    Department of Biophysical Chemistry, University of Lund, P.O. Box 124, SE-221 00 Lund, Sweden. torbjorn.drakenberg@bpc.lu.se




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Vitamin K-dependent protein S
A
87Homo sapiensMutation(s): 0 
Gene Names: PROS1 (PROS)
Find proteins for P07225 (Homo sapiens)
Go to Gene View: PROS1
Go to UniProtKB:  P07225
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • Olderado: 1Z6C Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-06-21
    Type: Initial release
  • Version 1.1: 2008-04-30
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance