1YQD

Sinapyl Alcohol Dehydrogenase complexed with NADP+


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.195 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural and Kinetic Basis for Substrate Selectivity in Populus tremuloides Sinapyl Alcohol Dehydrogenase.

Bomati, E.K.Noel, J.P.

(2005) Plant Cell 17: 1598-1611

  • DOI: 10.1105/tpc.104.029983
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The ac ...

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.


    Organizational Affiliation

    Jack Skirball Chemical Biology and Proteomics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
sinapyl alcohol dehydrogenase
A, B
366Populus tremuloidesMutation(s): 1 
Find proteins for Q94G59 (Populus tremuloides)
Go to UniProtKB:  Q94G59
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A, B
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
B
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
NAP
Query on NAP

Download SDF File 
Download CCD File 
A, B
NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE
2'-MONOPHOSPHOADENOSINE 5'-DIPHOSPHORIBOSE
C21 H28 N7 O17 P3
XJLXINKUBYWONI-NNYOXOHSSA-N
 Ligand Interaction
DTT
Query on DTT

Download SDF File 
Download CCD File 
A, B
2,3-DIHYDROXY-1,4-DITHIOBUTANE
1,4-DITHIOTHREITOL
C4 H10 O2 S2
VHJLVAABSRFDPM-IMJSIDKUSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.195 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 76.477α = 90.00
b = 137.796β = 90.00
c = 69.523γ = 90.00
Software Package:
Software NamePurpose
AMoREphasing
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-07-12
    Type: Initial release
  • Version 1.1: 2008-04-30
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Non-polymer description, Version format compliance