1XWJ

Vinculin head (1-258) in complex with the talin vinculin binding site 3 (1945-1969)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.281 
  • R-Value Work: 0.241 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural and Dynamic Characterization of a Vinculin Binding Site in the Talin Rod

Gingras, A.R.Vogel, K.P.Steinhoff, H.J.Ziegler, W.H.Patel, B.Emsley, J.Critchley, D.R.Roberts, G.C.Barsukov, I.L.

(2006) Biochemistry 45: 1805-1817

  • DOI: 10.1021/bi052136l
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Talin is a key protein involved in linking integrins to the actin cytoskeleton. The long flexible talin rod domain contains a number of binding sites for vinculin, a cytoskeletal protein important in stabilizing integrin-mediated cell-matrix junction ...

    Talin is a key protein involved in linking integrins to the actin cytoskeleton. The long flexible talin rod domain contains a number of binding sites for vinculin, a cytoskeletal protein important in stabilizing integrin-mediated cell-matrix junctions. Here we report the solution structure of a talin rod polypeptide (residues 1843-1973) which contains a single vinculin binding site (VBS; residues 1944-1969). Like other talin rod polypeptides, it consists of a helical bundle, in this case a four-helix bundle with a right-handed topology. The residues in the VBS important for vinculin binding were identified by studying the binding of a series of VBS-related peptides to the vinculin Vd1 domain. The key binding determinants are buried in the interior of the helical bundle, suggesting that a substantial structural change in the talin polypeptide is required for vinculin binding. Direct evidence for this was obtained by NMR and EPR spectroscopy. [1H,15N]-HSQC spectra of the talin fragment indicate that vinculin binding caused approximately two-thirds of the protein to adopt a flexible random coil. For EPR spectroscopy, nitroxide spin labels were attached to the talin polypeptide via appropriately located cysteine residues. Measurements of inter-nitroxide distances in doubly spin-labeled protein showed clearly that the helical bundle is disrupted and the mobility of the helices, except for the VBS helix, is markedly increased. Binding of vinculin to talin is thus a clear example of the unusual phenomenon of protein unfolding being required for protein/protein interaction.


    Organizational Affiliation

    Department of Biochemistry, University of Leicester, Henry Wellcome Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, United Kingdom.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
TalinB26N/AMutation(s): 0 
Find proteins for P54939 (Gallus gallus)
Explore P54939 
Go to UniProtKB:  P54939
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
VinculinA280Gallus gallusMutation(s): 0 
Gene Names: VCLVINC1
Find proteins for P12003 (Gallus gallus)
Explore P12003 
Go to UniProtKB:  P12003
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.281 
  • R-Value Work: 0.241 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 52.173α = 90
b = 72.434β = 90
c = 96.372γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-10-11
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance