1XKJ

BACTERIAL LUCIFERASE BETA2 HOMODIMER


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.191 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structure of bacterial luciferase beta 2 homodimer: implications for flavin binding.

Tanner, J.J.Miller, M.D.Wilson, K.S.Tu, S.C.Krause, K.L.

(1997) Biochemistry 36: 665-672

  • DOI: 10.1021/bi962511x
  • Primary Citation of Related Structures:  
    1XKJ

  • PubMed Abstract: 
  • The crystal structure of the beta 2 homodimer of Vibrio harveyi luciferase has been determined to 2.5 A resolution by molecular replacement. Crystals were grown serendipitously using the alpha beta form of the enzyme. The subunits of the homodimer share considerable structural homology to the beta subunit of the alpha beta luciferase heterodimer ...

    The crystal structure of the beta 2 homodimer of Vibrio harveyi luciferase has been determined to 2.5 A resolution by molecular replacement. Crystals were grown serendipitously using the alpha beta form of the enzyme. The subunits of the homodimer share considerable structural homology to the beta subunit of the alpha beta luciferase heterodimer. The four C-terminal residues that are disordered in the alpha beta structure are fully resolved in our structure. Four peptide bonds have been flipped relative to their orientations in the beta subunit of the alpha beta structure. The dimer interface of the homodimer is smaller than the interface of the heterodimer in terms of buried surface area and number of hydrogen bonds and salt links. Inspection of the subunits of our structure suggests that FMNH2 cannot bind to the beta 2 enzyme at the site that has been proposed for the alpha beta enzyme. However, we do uncover a potential FMNH2 binding pocket in the dimer interface, and we model FMN into this site. This proposed flavin binding motif is consistent with several lines of biochemical and structural evidence and leads to several conclusions. First, only one FMNH2 binds per homodimer. Second, we predict that reduced FAD and riboflavin should be poor substrates for beta 2. Third, the reduced activity of beta 2 compared to alpha beta is due to solvent exposure of the isoalloxazine ring in the beta 2 active site. Finally, we raise the question of whether our proposed flavin binding site could also be the binding site for flavin in the alpha beta enzyme.


    Organizational Affiliation

    Department of Biochemical and Biophysical Sciences, University of Houston, Texas 77204-5934, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
BETA2 LUCIFERASEA, B324Vibrio harveyiMutation(s): 0 
Gene Names: VIBRIO HARVEYI LUXABluxB
EC: 1.14.14.3
UniProt
Find proteins for P07739 (Vibrio harveyi)
Explore P07739 
Go to UniProtKB:  P07739
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.191 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 112.4α = 90
b = 112.4β = 90
c = 153.7γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-07-07
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance