1VKT

HUMAN INSULIN TWO DISULFIDE MODEL, NMR, 10 STRUCTURES


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 10 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Mapping the functional surface of insulin by design: structure and function of a novel A-chain analogue.

Hua, Q.X.Hu, S.Q.Frank, B.H.Jia, W.Chu, Y.C.Wang, S.H.Burke, G.T.Katsoyannis, P.G.Weiss, M.A.

(1996) J.Mol.Biol. 264: 390-403

  • DOI: 10.1006/jmbi.1996.0648
  • Primary Citation of Related Structures:  1LNP, 2JMN

  • PubMed Abstract: 
  • Functional surfaces of a protein are often mapped by combination of X-ray crystallography and mutagenesis. Such studies of insulin have yielded paradoxical results, suggesting that the native state is inactive and reorganizes on receptor binding. Of ...

    Functional surfaces of a protein are often mapped by combination of X-ray crystallography and mutagenesis. Such studies of insulin have yielded paradoxical results, suggesting that the native state is inactive and reorganizes on receptor binding. Of particular interest is the N-terminal alpha-helix of the A-chain. Does this segment function as an alpha-helix or reorganize as recently proposed in a prohormone-convertase complex? To correlate structure and function, we describe a mapping strategy based on protein design. The solution structure of an engineered monomer ([AspB10, LysB28, ProB29]-human insulin) is determined at neutral pH as a template for synthesis of a novel A-chain analogue. Designed by analogy to a protein-folding intermediate, the analogue lacks the A6-A11 disulphide bridge; the cysteine residues are replaced by serine. Its solution structure is remarkable for segmental unfolding of the N-terminal A-chain alpha-helix (A1 to A8) in an otherwise native subdomain. The structure demonstrates that the overall orientation of the A and B chains is consistent with reorganization of the A-chain's N-terminal segment. Nevertheless, the analogue's low biological activity suggests that this segment, a site of clinical mutation causing diabetes mellitus, functions as a preformed recognition alpha-helix.


    Organizational Affiliation

    Center for Molecular Oncology, University of Chicago, IL 60637, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
INSULIN
A
21Homo sapiensGene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
INSULIN
B
30Homo sapiensGene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 10 
  • Olderado: 1VKT Olderado
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1997-04-01
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance