1VD5

Crystal Structure of Unsaturated Glucuronyl Hydrolase, Responsible for the Degradation of Glycosaminoglycan, from Bacillus sp. GL1 at 1.8 A Resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.189 
  • R-Value Work: 0.168 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal Structure of Unsaturated Glucuronyl Hydrolase, Responsible for the Degradation of Glycosaminoglycan, from Bacillus sp. GL1 at 1.8 A Resolution

Itoh, T.Akao, S.Hashimoto, W.Mikami, B.Murata, K.

(2004) J.Biol.Chem. 279: 31804-31812

  • DOI: 10.1074/jbc.M403288200

  • PubMed Abstract: 
  • Unsaturated glucuronyl hydrolase (UGL) is a novel glycosaminoglycan hydrolase that releases unsaturated d-glucuronic acid from oligosaccharides produced by polysaccharide lyases. The x-ray crystallographic structure of UGL from Bacillus sp. GL1 was f ...

    Unsaturated glucuronyl hydrolase (UGL) is a novel glycosaminoglycan hydrolase that releases unsaturated d-glucuronic acid from oligosaccharides produced by polysaccharide lyases. The x-ray crystallographic structure of UGL from Bacillus sp. GL1 was first determined by multiple isomorphous replacement (mir) and refined at 1.8 A resolution with a final R-factor of 16.8% for 25 to 1.8 A resolution data. The refined UGL structure consists of 377 amino acid residues and 478 water molecules, four glycine molecules, two dithiothreitol (DTT) molecules, and one 2-methyl-2,4-pentanediol (MPD) molecule. UGL includes an alpha(6)/alpha(6)-barrel, whose structure is found in the six-hairpin enzyme superfamily of an alpha/alpha-toroidal fold. One side of the UGL alpha(6)/alpha(6)-barrel structure consists of long loops containing three short beta-sheets and contributes to the formation of a deep pocket. One glycine molecule and two DTT molecules surrounded by highly conserved amino acid residues in UGLs were found in the pocket, suggesting that catalytic and substrate-binding sites are located in this pocket. The overall UGL structure, with the exception of some loops, very much resembled that of the Bacillus subtilis hypothetical protein Yter, whose function is unknown and which exhibits little amino acid sequence identity with UGL. In the active pocket, residues possibly involved in substrate recognition and catalysis by UGL are conserved in UGLs and Yter. The most likely candidate catalytic residues for glycosyl hydrolysis are Asp(88) and Asp(149). This was supported by site-directed mutagenesis studies in Asp(88) and Asp(149).


    Organizational Affiliation

    Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
unsaturated glucuronyl hydrolase
A
377Bacillus sp. (strain GL1)Mutation(s): 0 
Gene Names: ugl
EC: 3.2.1.179
Find proteins for Q9RC92 (Bacillus sp. (strain GL1))
Go to UniProtKB:  Q9RC92
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GLY
Query on GLY

Download SDF File 
Download CCD File 
A
GLYCINE
C2 H5 N O2
DHMQDGOQFOQNFH-UHFFFAOYSA-N
 Ligand Interaction
DTT
Query on DTT

Download SDF File 
Download CCD File 
A
2,3-DIHYDROXY-1,4-DITHIOBUTANE
1,4-DITHIOTHREITOL
C4 H10 O2 S2
VHJLVAABSRFDPM-IMJSIDKUSA-N
 Ligand Interaction
MPD
Query on MPD

Download SDF File 
Download CCD File 
A
(4S)-2-METHYL-2,4-PENTANEDIOL
C6 H14 O2
SVTBMSDMJJWYQN-YFKPBYRVSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.189 
  • R-Value Work: 0.168 
  • Space Group: P 65 2 2
Unit Cell:
Length (Å)Angle (°)
a = 103.012α = 90.00
b = 103.012β = 90.00
c = 223.039γ = 120.00
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
PHASESphasing
CNSrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-07-13
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Source and taxonomy, Version format compliance