1VB9

Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) complexed with transglycosylated product


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.194 
  • R-Value Observed: 0.194 

wwPDB Validation 3D Report Full Report



Literature

The crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) complexed with transglycosylated product

Mizuno, M.Tonozuka, T.Uechi, A.Ohtaki, A.Ichikawa, K.Kamitori, S.Nishikawa, A.Sakano, Y.

(2004) Eur J Biochem 271: 2530-2538

  • DOI: 10.1111/j.1432-1033.2004.04183.x
  • Primary Citation of Related Structures:  
    1VB9

  • PubMed Abstract: 
  • Alphan alpha-amylase (TVA II) from Thermoactinomyces vulgaris R-47 efficiently hydrolyzes alpha-1,4-glucosidic linkages of pullulan to produce panose in addition to hydrolyzing starch. TVA II also hydrolyzes alpha-1,4-glucosidic linkages of cyclodext ...

    Alphan alpha-amylase (TVA II) from Thermoactinomyces vulgaris R-47 efficiently hydrolyzes alpha-1,4-glucosidic linkages of pullulan to produce panose in addition to hydrolyzing starch. TVA II also hydrolyzes alpha-1,4-glucosidic linkages of cyclodextrins and alpha-1,6-glucosidic linkages of isopanose. To clarify the basis for this wide substrate specificity of TVA II, we soaked 4(3)-alpha-panosylpanose (4(3)-P2) (a pullulan hydrolysate composed of two panosyl units) into crystals of D325N inactive mutated TVA II. We then determined the crystal structure of TVA II complexed with 4(2)-alpha-panosylpanose (4(2)-P2), which was produced by transglycosylation from 4(3)-P2, at 2.2-A resolution. The shape of the active cleft of TVA II is unique among those of alpha-amylase family enzymes due to a loop (residues 193-218) that is located at the end of the cleft around the nonreducing region and forms a 'dam'-like bank. Because this loop is short in TVA II, the active cleft is wide and shallow around the nonreducing region. It is assumed that this short loop is one of the reasons for the wide substrate specificity of TVA II. While Trp356 is involved in the binding of Glc +2 of the substrate, it appears that Tyr374 in proximity to Trp356 plays two roles: one is fixing the orientation of Trp356 in the substrate-liganded state and the other is supplying the water that is necessary for substrate hydrolysis.


    Organizational Affiliation

    Department of Applied Biological Science, Tokyo Univrsity of Agriculture and Technology, Tokyo, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
alpha-amylase IIAB585Thermoactinomyces vulgarisMutation(s): 1 
Gene Names: tvaII
EC: 3.2.1.1 (PDB Primary Data), 3.2.1.135 (UniProt)
Find proteins for Q08751 (Thermoactinomyces vulgaris)
Explore Q08751 
Go to UniProtKB:  Q08751
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChainsChain Length2D Diagram Glycosylation
alpha-D-glucopyranose-(1-6)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-[alpha-D-glucopyranose-(1-6)]alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose
C, D
6 N/A
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download CCD File 
A, B
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.194 
  • R-Value Observed: 0.194 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 113.049α = 90
b = 118.274β = 90
c = 112.107γ = 90
Software Package:
Software NamePurpose
CNSrefinement
MOSFLMdata reduction
CCP4data scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-03-08
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary