1U21

transthyretin with tethered inhibitor on one monomer.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.69 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.217 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Kinetic stabilization of an oligomeric protein by a single ligand binding event

Wiseman, R.L.Johnson, S.M.Kelker, M.S.Foss, T.Wilson, I.A.Kelly, J.W.

(2005) J.Am.Chem.Soc. 127: 5540-5551

  • DOI: 10.1021/ja042929f

  • PubMed Abstract: 
  • Protein native state stabilization imposed by small molecule binding is an attractive strategy to prevent the misfolding and misassembly processes associated with amyloid diseases. Transthyretin (TTR) amyloidogenesis requires rate-limiting tetramer d ...

    Protein native state stabilization imposed by small molecule binding is an attractive strategy to prevent the misfolding and misassembly processes associated with amyloid diseases. Transthyretin (TTR) amyloidogenesis requires rate-limiting tetramer dissociation before misassembly of a partially denatured monomer ensues. Selective stabilization of the native TTR tetramer over the dissociative transition state by small molecule binding to both thyroxine binding sites raises the kinetic barrier of tetramer dissociation, preventing amyloidogenesis. Assessing the amyloidogenicity of a TTR tetramer having only one amyloidogenesis inhibitor (I) bound is challenging because the two small molecule binding constants are generally not distinct enough to allow for the exclusive formation of TTR.I in solution to the exclusion of TTR.I(2) and unliganded TTR. Herein, we report a method to tether one fibril formation inhibitor to TTR by disulfide bond formation. Occupancy of only one of the two thyroxine binding sites is sufficient to inhibit tetramer dissociation in 6.0 M urea and amyloidogenesis under acidic conditions by imposing kinetic stabilization on the entire tetramer. The sufficiency of single occupancy for stabilizing the native state of TTR provides the incentive to search for compounds displaying striking negative binding cooperativity (e.g., K(d1) in nanomolar range and K(d2) in the micromolar to millimolar range), enabling lower doses of inhibitor to be employed in the clinic, mitigating potential side effects.


    Organizational Affiliation

    Department of Chemistry, the Department of Molecular Biology, and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 265, La Jolla, California 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Transthyretin
A, B
127Homo sapiensGene Names: TTR (PALB)
Find proteins for P02766 (Homo sapiens)
Go to Gene View: TTR
Go to UniProtKB:  P02766
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
P2C
Query on P2C

Download SDF File 
Download CCD File 
A, B
2-[(3,5-DICHLORO-4-TRIOXIDANYLPHENYL)AMINO]BENZOIC ACID
2-[3,5-DICHLORO-4-(2-{2-[2(2-MERCAPTOETHOXY)ETHOXY]ETHOXY}ETHOXY)PHENYLAMINO]BENZOIC ACID
C13 H9 Cl2 N O5
SNAMTVTZDPUVRA-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
P2CKd: 5 nM BINDINGMOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.69 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.217 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 43.654α = 90.00
b = 85.643β = 90.00
c = 63.925γ = 90.00
Software Package:
Software NamePurpose
CNSphasing
SCALEPACKdata scaling
HKL-2000data reduction
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-06-28
    Type: Initial release
  • Version 1.1: 2008-04-30
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Advisory, Derived calculations, Version format compliance