1TIB

CONFORMATIONAL LABILITY OF LIPASES OBSERVED IN THE ABSENCE OF AN OIL-WATER INTERFACE: CRYSTALLOGRAPHIC STUDIES OF ENZYMES FROM THE FUNGI HUMICOLA LANUGINOSA AND RHIZOPUS DELEMAR


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.84 Å

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar.

Derewenda, U.Swenson, L.Wei, Y.Green, R.Kobos, P.M.Joerger, R.Haas, M.J.Derewenda, Z.S.

(1994) J.Lipid Res. 35: 524-534

  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Considerable controversy exists regarding the exact nature of the molecular mechanism of interfacial activation, a process by which most lipases achieve maximum catalytic activity upon adsorption to an oil water interface. X-ray crystallographic stud ...

    Considerable controversy exists regarding the exact nature of the molecular mechanism of interfacial activation, a process by which most lipases achieve maximum catalytic activity upon adsorption to an oil water interface. X-ray crystallographic studies show that lipases contain buried active centers and that displacements of entire secondary structure elements, or "lids," take place when the enzymes assume active conformations [Derewenda, U., A. M. Brzozowski, D. M. Lawson, and Z. S. Derewenda. 1992. Biochemistry: 31: 1532-1541; van Tilbeurgh, H., M-P. Egloff, C. Martinez, N. Rugani, R. Verger, and C. Cambillau. 1993. Nature: 362: 814-820; Grochulski, P., L. Yunge, J. D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, and M. Cygler. 1993. J. Biol. Chem. 268: 12843-12847]. A simple two-state model inferred from these results implies that the "closed" conformation is stable in an aqueous medium, rendering the active centers inaccessible to water soluble substrates. We now report that in crystals of the Humicola lanuginosa lipase the "lid" is significantly disordered irrespective of the ionic strength of the medium, while in a related enzyme from Rhizopus delemar, crystallized in the presence of a detergent, the two molecules that form the asymmetric unit show different "lid" conformations. These new results call into question the simplicity of the "enzyme theory" of interfacial activation.


    Related Citations: 
    • Current Progress in Crystallographic Studies of New Lipases from Filamentous Fungi
      Derewenda, U.,Swenson, L.,Green, R.,Wei, Y.,Yamaguchi, S.,Joerger, R.,Haas, M.J.,Derewenda, Z.S.
      (1994) Protein Eng. 7: 551
    • An Unusual Buried Polar Cluster in a Family of Fungal Lipases
      Derewenda, U.,Swenson, L.,Green, R.,Wei, Y.,Dodson, G.G.,Yamaguchi, S.,Haas, M.J.,Derewenda, Z.S.
      (1994) Nat.Struct.Mol.Biol. 1: 36


    Organizational Affiliation

    Department of Biochemistry, University of Alberta, Edmonton, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
LIPASE
A
269Thermomyces lanuginosusMutation(s): 0 
Gene Names: LIP
EC: 3.1.1.3
Find proteins for O59952 (Thermomyces lanuginosus)
Go to UniProtKB:  O59952
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.84 Å
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 103.165α = 90.00
b = 51.994β = 90.00
c = 45.733γ = 90.00
Software Package:
Software NamePurpose
PROLSQrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1995-01-26
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance