1SZC

Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.210 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.

Zhao, K.Harshaw, R.Chai, X.Marmorstein, R.

(2004) Proc Natl Acad Sci U S A 101: 8563-8568

  • DOI: 10.1073/pnas.0401057101
  • Primary Citation of Related Structures:  
    1SZD, 1SZC

  • PubMed Abstract: 
  • Sir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein t ...

    Sir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein targets and generate lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide products. To provide structural insights into the chemistry catalyzed by Sir2 proteins we report the high-resolution ternary structure of yeast Hst2 (homologue of Sir two 2) with an acetyllysine histone H4 peptide and a nonhydrolyzable NAD(+) analogue, carba-NAD(+), as well as an analogous ternary complex with a reaction intermediate analog formed immediately after nicotinamide hydrolysis, ADP-ribose. The ternary complex with carba-NAD(+) reveals that the nicotinamide group makes stabilizing interactions within a binding pocket harboring conserved Sir2 residues. Moreover, an asparagine residue, N116, strictly conserved within Sir2 proteins and shown to be essential for nicotinamide exchange, is in position to stabilize the oxocarbenium intermediate that has been proposed to proceed the hydrolysis of nicotinamide. A comparison of this structure with the ADP-ribose ternary complex and a previously reported ternary complex with the 2'-O-acetyl-ADP-ribose reaction product reveals that the ribose ring of the cofactor and the highly conserved beta1-alpha2 loop of the protein undergo significant structural rearrangements to facilitate the ordered NAD(+) reactions of nicotinamide cleavage and ADP-ribose transfer to acetate. Together, these studies provide insights into the chemistry of NAD(+) cleavage and acetylation by Sir2 proteins and have implications for the design of Sir2-specific regulatory molecules.


    Related Citations: 
    • Structure and Autoregulation Of The Yeast Hst2 Homolog Of Sir2
      Zhao, K., Chai, X., Clements, A., Marmorstein, R.
      (2003) Nat Struct Mol Biol 10: 864
    • Structure Of The Yeast Hst2 Protein Deacetylase In Ternary Complex With 2'-O-Acetyl ADP Ribose and Histone Peptide
      Zhao, K., Chai, X., Marmorstein, R.
      (2003) Structure 11: 1403

    Organizational Affiliation

    The Wistar Institute, Department of Biochemistry and Biophysics, School of Medicine, and Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
NAD-dependent deacetylase HST2A297Saccharomyces cerevisiaeMutation(s): 0 
EC: 3.5.1 (PDB Primary Data), 2.3.1.286 (UniProt)
Find proteins for P53686 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P53686 
Go to UniProtKB:  P53686
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
Histone H4 peptideB10N/AMutation(s): 1 
Find proteins for P02309 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P02309 
Go to UniProtKB:  P02309
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CNA
Query on CNA

Download CCD File 
A
CARBA-NICOTINAMIDE-ADENINE-DINUCLEOTIDE
C22 H30 N7 O13 P2
DGPLSUKWXXSBCU-VGXGLJSLSA-O
 Ligand Interaction
GOL
Query on GOL

Download CCD File 
A
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
ZN
Query on ZN

Download CCD File 
A
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
ALY
Query on ALY
BL-PEPTIDE LINKINGC8 H16 N2 O3LYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.210 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.267α = 90
b = 105.267β = 90
c = 66.609γ = 120
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-06-15
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2011-11-16
    Changes: Atomic model