Solution NMR Structure and X-ray Absorption Analysis of the C-Terminal Zinc-Binding Domain of the SecA ATPase.
Dempsey, B.R., Wrona, M., Moulin, J.M., Gloor, G.B., Jalilehvand, F., Lajoie, G., Shaw, G.S., Shilton, B.H.(2004) Biochemistry 43: 9361-9371
- PubMed: 15260479 
- DOI: https://doi.org/10.1021/bi0493057
- Primary Citation of Related Structures:  
1SX0, 1SX1 - PubMed Abstract: 
The solution NMR structure of a 22-residue Zn(2+)-binding domain (ZBD) from Esherichia coli preprotein translocase subunit SecA is presented. In conjunction with X-ray absorption analysis, the NMR structure shows that three cysteines and a histidine in the sequence CXCXSGX(8)CH assume a tetrahedral arrangement around the Zn(2+) atom, with an average Zn(2+)-S bond distance of 2.30 A and a Zn(2+)-N bond distance of 2.03 A. The NMR structure shows that ND1 of His20 binds to the Zn(2+) atom. The ND1-Zn(2+) bond is somewhat strained: it makes an angle of approximately 17 degrees with the plane of the ring, and it also shows a significant "in-plane" distortion of 13 degrees. A comprehensive sequence alignment of the SecA-ZBD from many different organisms shows that, along with the four Zn(2+) ligands, there is a serine residue (Ser12) that is completely conserved. The NMR structure indicates that the side chain of this serine residue forms a strong hydrogen bond with the thiolate of the third cysteine residue (Cys19); therefore, the conserved serine appears to have a critical role in the structure. SecB, an export-specific chaperone, is the only known binding partner for the SecA-ZBD. A phylogenetic analysis using 86 microbial genomes shows that 59 of the organisms carry SecA with a ZBD, but only 31 of these organisms also possess a gene for SecB, indicating that there may be uncharacterized binding partners for the SecA-ZBD.
Organizational Affiliation: 
Department of Biochemistry, University of Western Ontario, London ON N6A 5C1, Ontario, Canada.