1STE

STAPHYLOCOCCAL ENTEROTOXIN C2 FROM STAPHYLOCOCCUS AUREUS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.205 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site.

Papageorgiou, A.C.Acharya, K.R.Shapiro, R.Passalacqua, E.F.Brehm, R.D.Tranter, H.S.

(1995) Structure 3: 769-779

  • DOI: https://doi.org/10.1016/s0969-2126(01)00212-x
  • Primary Citation of Related Structures:  
    1STE

  • PubMed Abstract: 

    Staphylococcus aureus enterotoxin C2 (SEC2) belongs to a family of proteins, termed 'superantigens', that form complexes with class II MHC molecules enabling them to activate a substantial number of T cells. Although superantigens seem to act by a common mechanism, they vary in many of their specific interactions and biological properties. Comparison of the structure of SEC2 with those of two other superantigens--staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)--may provide insight into their mode of action. The crystal structure of SEC2 has been determined at 2.0 A resolution. The overall topology of the molecule resembles that of SEB and TSST-1, and the regions corresponding to the MHC class II and T-cell receptor binding sites on SEB are quite similar in SEC2. A unique feature of SEC2 is the presence of a zinc ion located in a solvent-exposed region at the interface between the two domains of the molecule. The zinc ion is coordinated to Asp83, His118, His122 and Asp9* (from the neighbouring molecule in the crystal lattice). Atomic absorption spectrometry demonstrates that zinc is also bound to SEC2 in solution. SEC2 appears to be capable of binding to MHC class II molecules in much the same manner as SEB. However, structure-function studies have suggested an alternative binding mode that involves a different site on the toxin. The zinc ion of SEC2 lies within this region and thus may be important for complex formation, for example by acting as a bridge between the two molecules. Other possible roles for the metal cation, including a catalytic one, are also considered.


  • Organizational Affiliation

    School of Biology and Biochemistry, University of Bath, Claverton Down, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
STAPHYLOCOCCAL ENTEROTOXIN C2239Staphylococcus aureusMutation(s): 0 
UniProt
Find proteins for P34071 (Staphylococcus aureus)
Explore P34071 
Go to UniProtKB:  P34071
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP34071
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
B [auth A]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.205 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.05α = 90
b = 43.05β = 90
c = 290γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-12-23
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance