1SG8

Crystal structure of the procoagulant fast form of thrombin


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.289 
  • R-Value Work: 0.219 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Molecular dissection of na+ binding to thrombin.

Pineda, A.O.Carrell, C.J.Bush, L.A.Prasad, S.Caccia, S.Chen, Z.W.Mathews, F.S.Di Cera, E.

(2004) J.Biol.Chem. 279: 31842-31853

  • DOI: 10.1074/jbc.M401756200
  • Primary Citation of Related Structures:  1SFQ, 1SGI, 1SHH
  • Also Cited By: 2OCV, 2PGB, 2PGQ, 3BEF, 3BV9, 3JZ1, 3JZ2, 3LU9, 3QDZ, 3R3G, 3S7K, 4DT7, 4MLF, 4RKJ, 4RKO, 5JDU

  • PubMed Abstract: 
  • Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in sub ...

    Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in substrate recognition. Using a panel of 78 Ala mutants of thrombin, we have mapped the allosteric core of residues that are energetically linked to Na(+) binding. These residues are Asp-189, Glu-217, Asp-222, and Tyr-225, all in close proximity to the bound Na(+). Among these residues, Asp-189 shares with Asp-221 the important function of transducing Na(+) binding into enhanced catalytic activity. None of the residues of exosite I, exosite II, or the 60-loop plays a significant role in Na(+) binding and allosteric transduction. X-ray crystal structures of the Na(+)-free (slow) and Na(+)-bound (fast) forms of thrombin, free or bound to the active site inhibitor H-d-Phe-Pro-Arg-chloromethyl-ketone, document the conformational changes induced by Na(+) binding. The slow --> fast transition results in formation of the Arg-187:Asp-222 ion pair, optimal orientation of Asp-189 and Ser-195 for substrate binding, and a significant shift of the side chain of Glu-192 linked to a rearrangement of the network of water molecules that connect the bound Na(+) to Ser-195 in the active site. The changes in the water network and the allosteric core explain the thermodynamic signatures linked to Na(+) binding and the mechanism of thrombin activation by Na(+). The role of the water network uncovered in this study establishes a new paradigm for the allosteric regulation of thrombin and other Na(+)-activated enzymes involved in blood coagulation and the immune response.


    Organizational Affiliation

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
thrombin
A, D
36Homo sapiensGene Names: F2
EC: 3.4.21.5
Find proteins for P00734 (Homo sapiens)
Go to Gene View: F2
Go to UniProtKB:  P00734
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
thrombin
B, E
259Homo sapiensGene Names: F2
EC: 3.4.21.5
Find proteins for P00734 (Homo sapiens)
Go to Gene View: F2
Go to UniProtKB:  P00734
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NA
Query on NA

Download SDF File 
Download CCD File 
B, E
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
NAG
Query on NAG

Download SDF File 
Download CCD File 
B, E
N-ACETYL-D-GLUCOSAMINE
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.289 
  • R-Value Work: 0.219 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 59.490α = 90.00
b = 65.580β = 90.00
c = 162.440γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
SCALEPACKdata scaling
HKL-2000data reduction
CNSphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-06-08
    Type: Initial release
  • Version 1.1: 2008-04-29
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Non-polymer description, Version format compliance