1SB9

Crystal structure of Pseudomonas aeruginosa UDP-N-acetylglucosamine 4-epimerase complexed with UDP-glucose


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.5 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.195 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal Structure of WbpP, a Genuine UDP-N-acetylglucosamine 4-Epimerase from Pseudomonas aeruginosa: SUBSTRATE SPECIFICITY IN UDP-HEXOSE 4-EPIMERASES.

Ishiyama, N.Creuzenet, C.Lam, J.S.Berghuis, A.M.

(2004) J.Biol.Chem. 279: 22635-22642

  • DOI: 10.1074/jbc.M401642200
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The O antigen of lipopolysaccharide in Gram-negative bacteria plays a critical role in bacterium-host interactions, and for pathogenic bacteria it is a major virulence factor. In Pseudomonas aeruginosa serotype O6 one of the initial steps in O-antige ...

    The O antigen of lipopolysaccharide in Gram-negative bacteria plays a critical role in bacterium-host interactions, and for pathogenic bacteria it is a major virulence factor. In Pseudomonas aeruginosa serotype O6 one of the initial steps in O-antigen biosynthesis is catalyzed by a saccharide epimerase, WbpP. WbpP is a member of the UDP-hexose 4-epimerase family of enzymes and exists as a homo-dimer. This enzyme preferentially catalyzes the conversion between UDP-GlcNAc and UDPGalNAc above UDP-Glc and UDP-Gal, using NAD(+) as a cofactor. The crystal structures of WbpP in complex with cofactor and either UDP-Glc or UDP-GalNAc were determined at 2.5 and 2.1 A, respectively, which represents the first structural studies of a genuine UDP-GlcNAc 4-epimerase. These structures in combination with complementary mutagenesis studies suggest that the basis for the differential substrate specificity of WbpP is a consequence of the presence of a pliable solvent network in the active site. This information allows for a comprehensive analysis of the relationship between sequence and substrate specificity for UDP-hexose 4-epimerases and enables the formulation of consensus sequences that predict substrate specificity of UDP-hexose 4-epimerases yet to be biochemically characterized. Furthermore, the examination indicates that as little as one residue can dictate substrate specificity. Nonetheless, phylogenetic analysis suggests that this substrate specificity is an evolutionary and highly conserved property within UDP-hexose 4-epimerases.


    Organizational Affiliation

    Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A4, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
wbpP
A
352Pseudomonas aeruginosaMutation(s): 0 
Find proteins for Q8KN66 (Pseudomonas aeruginosa)
Go to UniProtKB:  Q8KN66
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
UPG
Query on UPG

Download SDF File 
Download CCD File 
A
URIDINE-5'-DIPHOSPHATE-GLUCOSE
URIDINE-5'-MONOPHOSPHATE GLUCOPYRANOSYL-MONOPHOSPHATE ESTER
C15 H24 N2 O17 P2
HSCJRCZFDFQWRP-JZMIEXBBSA-N
 Ligand Interaction
NAD
Query on NAD

Download SDF File 
Download CCD File 
A
NICOTINAMIDE-ADENINE-DINUCLEOTIDE
C21 H27 N7 O14 P2
BAWFJGJZGIEFAR-NNYOXOHSSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.5 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.195 
  • Space Group: C 2 2 21
Unit Cell:
Length (Å)Angle (°)
a = 60.989α = 90.00
b = 95.704β = 90.00
c = 141.165γ = 90.00
Software Package:
Software NamePurpose
CNSphasing
SCALEPACKdata scaling
DENZOdata reduction
CNSrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-05-25
    Type: Initial release
  • Version 1.1: 2008-04-29
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance