Crystal structures of HIV-1 reverse transcriptases mutated at codons 100, 106 and 108 and mechanisms of resistance to non-nucleoside inhibitors
Ren, J., Nichols, C.E., Chamberlain, P.P., Weaver, K.L., Short, S.A., Stammers, D.K.(2004) J Mol Biol 336: 569-578
- PubMed: 15095972 Search on PubMed
- DOI: 10.1016/j.jmb.2003.12.055
- Primary Citation of Related Structures:  
1S1T, 1S1U, 1S1V, 1S1W, 1S1X - PubMed Abstract: 
- Crystal structures of Zidovudine- or Lamivudine-resistant human immunodeficiency virus type 1 reverse transcriptases containing mutations at codons 41, 184, and 215
Chamberlain, P.P., Ren, J., Nichols, C.E., Douglas, L., Lennerstrand, J., Larder, B.A., Stuart, D.I., Stammers, D.K.
(2002) J Virol 76: 10015 - Structural Mechanisms of Drug Resistance for Mutations at Codons 181 and 188 in HIV-1 Reverse Transcriptase and the Improved Resilience of Second Generation Non-Nucleoside Inhibitors
Ren, J., Nichols, C., Bird, L., Chamberlain, P., Weaver, K.L., Short, S.A., Stuart, D.I., Stammers, D.K.
(2001) J Mol Biol 312: 795 - 2-Amino-6-Arylsulfonylbenzonitriles as Non-Nucleoside reverse Transcriptase Inhibitors of HIV-1
Chan, J.H., Hong, J.S., Hunter III, R.N., Orr, G.F., Cowan, J.R., Sherman, D.B., Sparks, S.M., Reitter, B.E., Andrews III, C.W., Hazen, R.J., St Clair, M., Boone, L.R., Ferris, R.G., Creech, K.L., Roberts, G.B., Short, S.A., Weaver, K., Ott, R.J., Ren, J., Hopkins, A., Stuart, D.I., Stammers, D.K.
(2001) J Med Chem 44: 1866 - Structural Basis for the Resilience of Efavirenz (Dmp-266) to Drug Resistance Mutations in HIV-1 Reverse Transcriptase
Ren, J., Milton, J., Weaver, K.L., Short, S.A., Stuart, D.I., Stammers, D.K.
(2000) Structure 8: 1089 - Binding of the Second Generation Non-Nucleoside Inhibitor S-1153 to HIV-1 Reverse Transcriptase Involves Extensive Main Chain Hydrogen Bonding
Ren, J., Nichols, C., Bird, L.E., Fujiwara, T., Suginoto, H., Stuart, D.I., Stammers, D.K.
(2000) J Biol Chem 275: 14316 - Phenethylthiazolylthiourea (Pett) Non-Nucleoside Inhibitors of HIV-1 and HIV-2 Reverse Transcriptases. Structural and Biochemical Analyses
Ren, J., Diprose, J., Warren, J., Esnouf, R.M., Bird, L.E., Ikemizu, S., Slater, M., Milton, J., Balzarini, J., Stuart, D.I., Stammers, D.K.
(2000) J Biol Chem 275: 5633 - Crystallographic Analysis of the Binding Modes of Thiazoloisoindolinone Non-Nucleoside Inhibitors to HIV-1 Reverse Transcriptase and Comparison with Modeling Studies
Ren, J., Esnouf, R.M., Hopkins, A.L., Stuart, D.I., Stammers, D.K.
(1999) J Med Chem 42: 3845 - Design of Mkc-442 (Emivirine) Analogues with Improved Activity Against Drug-Resistant HIV Mutants
Hopkins, A.L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D.I., Stammers, D.K.
(1999) J Med Chem 42: 4500 - Crystal Structures of HIV-1 Reverse Transcriptase in Complex with Carboxanilide Derivatives
Ren, J., Esnouf, R.M., Hopkins, A.L., Warren, J., Balzarini, J., Stuart, D.I., Stammers, D.K.
(1998) Biochemistry 37: 14394 - 3'-Azido-3'-Deoxythymidine Drug Resistance Mutations in HIV-1 Reverse Transcriptase Can Induce Long Range Conformational Changes
Ren, J., Esnouf, R.M., Hopkins, A.L., Jones, E.Y., Kirby, I., Keeling, J., Ross, C.K., Larder, B.A., Stuart, D.I., Stammers, D.K.
(1998) Proc Natl Acad Sci U S A 95: 9518 - Continuous and Discontinuous Changes in the Unit Cell of HIV-1 Reverse Transcriptase Crystals on Dehydration
Esnouf, R.M., Ren, J., Garman, E., Somers, D.O., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1998) Acta Crystallogr D Biol Crystallogr 54: 938 - Unique Features in the Structure of the Complex between HIV-1 Reverse Transcriptase and the Bis(Heteroaryl)Piperazine (Bhap) U-90152 Explain Resistance Mutations for This Non-Nucleoside Inhibitor
Esnouf, R.M., Ren, J., Hopkins, A.L., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1997) Proc Natl Acad Sci U S A 94: 3984 - Complexes of HIV-1 Reverse Transcriptase with Inhibitors of the HEPT Series Reveal Conformational Changes Relevant to the Design of Potent Non-Nucleoside Inhibitors
L Hopkins, A., Ren, J., Esnouf, R.M., Willcox, B.E., Jones, E.Y., Ross, C.K., Miyasaka, T., Walker, R.T., Tanaka, H., Stammers, D.K., Stuart, D.I.
(1996) J Med Chem 39: 1589 - The Structure of HIV-1 Reverse Transcriptase Complexed with 9-Chloro-TIBO: Lessons for Inhibitor Design
Ren, J., Esnouf, R.M., Hopkins, A.L., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1995) Structure 3: 915 - High Resolution Structures of HIV-1 RT from Four RT-Inhibitor Complexes
Ren, J., Esnouf, R.M., Garman, E., Somers, D.O., Ross, C.K., Kirby, I., Keeling, J., Darby, G., Jones, E.Y., Stuart, D.I., Stammers, D.K.
(1995) Nat Struct Biol 2: 293 - Mechanism of Inhibition of HIV-1 Reverse Transcriptase by Non-Nucleoside Inhibitors
Esnouf, R.M., Ren, J., Ross, C.K., Jones, E.Y., Stammers, D.K., Stuart, D.I.
(1995) Nat Struct Biol 2: 303 - Crystals of HIV-1 Reverse Transcriptase Diffracting to 2.2 A Resolution
Stammers, D.K., Somers, D.O., Ross, C.K., Kirby, I., Ray, P.H., Wilson, J.E., Norman, M., Ren, J., Esnouf, R.M., Garman, E., Jones, E.Y., Stuart, D.I.
(1994) J Mol Biol 242: 586
Leu100Ile, Val106Ala and Val108Ile are mutations in HIV-1 reverse transcriptase (RT) that are observed in the clinic and give rise to resistance to certain non-nucleoside inhibitors (NNRTIs) including the first-generation drug nevirapine. In order to investigate structural mechanisms of resistance for different NNRTI classes we have determined six crystal structures of mutant RT-inhibitor complexes ...
Leu100Ile, Val106Ala and Val108Ile are mutations in HIV-1 reverse transcriptase (RT) that are observed in the clinic and give rise to resistance to certain non-nucleoside inhibitors (NNRTIs) including the first-generation drug nevirapine. In order to investigate structural mechanisms of resistance for different NNRTI classes we have determined six crystal structures of mutant RT-inhibitor complexes. Val108 does not have direct contact with nevirapine in wild-type RT and in the RT(Val108Ile) complex the biggest change observed is at the distally positioned Tyr181 which is > 8 A from the mutation site. Thus in contrast to most NNRTI resistance mutations RT(Val108Ile) appears to act via an indirect mechanism which in this case is through alterations of the ring stacking interactions of the drug particularly with Tyr181. Shifts in side-chain and inhibitor positions compared to wild-type RT are observed in complexes of nevirapine and the second-generation NNRTI UC-781 with RT(Leu100Ile) and RT(Val106Ala), leading to perturbations in inhibitor contacts with Tyr181 and Tyr188. Such perturbations are likely to be a factor contributing to the greater loss of binding for nevirapine compared to UC-781 as, in the former case, a larger proportion of binding energy is derived from aromatic ring stacking of the inhibitor with the tyrosine side-chains. The differing resistance profiles of first and second generation NNRTIs for other drug resistance mutations in RT may also be in part due to this indirect mechanism.
Related Citations: 
Organizational Affiliation: 
Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford Roosevelt Drive, Oxford OX3 7BN, UK.