1RAS

CRYSTAL STRUCTURE OF A FLUORESCENT DERIVATIVE OF RNASE A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal structure of a fluorescent derivative of RNase A.

Baudet-Nessler, S.Jullien, M.Crosio, M.P.Janin, J.

(1993) Biochemistry 32: 8457-8464

  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The crystal structure of RNase A chemically modified with the fluorescent probe, N-[[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonic acid (1,5-IAENS), has been solved and refined to high resolution. It yields information on the mode of binding, ...

    The crystal structure of RNase A chemically modified with the fluorescent probe, N-[[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonic acid (1,5-IAENS), has been solved and refined to high resolution. It yields information on the mode of binding, the mobility of a probe commonly used in spectroscopic studies, and anion binding sites in RNase A. Trigonal crystals of the fluorescent derivative grown in sodium or cesium chloride and ammonium sulfate, pH 5.1, were nearly isomorphous with those of a semisynthetic RNase [DeMel, et al. (1992) J. Biol. Chem. 267, 247-256]. Refinement starting from semisynthetic RNase led to a model with R = 20% against 1.7-A diffraction data from crystals in ammonium sulfate and another model with R = 17% against 1.9-A data taken in the presence of 3 M NaCl. The second model contains three chloride ions: one is at the active site, and the other two are at molecular interfaces. Otherwise, the two models are very similar. The fluorophore has very little effect on the protein conformation. It is found to be covalently attached to the active site His-12 with the naphthyl group stacked on the imidazole ring of His-119. It remains largely accessible to solvent and in a polar environment on the protein surface, even though the fluorescence emission spectrum is blue shifted as it is in nonpolar solvents.


    Related Citations: 
    • Fluorescent Probe of Ribonuclease A Conformation
      Jullien, M.,Garel, J.-R.
      (1981) Biochemistry 20: 7021


    Organizational Affiliation

    Laboratoire de Biologie Structurale, UMR 9920 CNRS-Université Paris-Sud, Orsay, France.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
RIBONUCLEASE A
A
123Bos taurusMutation(s): 0 
Gene Names: RNASE1 (RNS1)
EC: 4.6.1.18
Find proteins for P61823 (Bos taurus)
Go to Gene View: RNASE1
Go to UniProtKB:  P61823
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
AEN
Query on AEN

Download SDF File 
Download CCD File 
A
5-(1-SULFONAPHTHYL)-ACETYLAMINO-ETHYLAMINE
C14 H16 N2 O4 S
FBZFLXJHAMMUQM-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.7 Å
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 65.100α = 90.00
b = 65.100β = 90.00
c = 65.020γ = 120.00
Software Package:
Software NamePurpose
PROLSQrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1993-10-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance