1QBS

HIV-1 PROTEASE INHIBITORS WIIH LOW NANOMOLAR POTENCY


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Work: 0.189 

wwPDB Validation 3D Report Full Report


This is version 1.4 of the entry. See complete history

Literature

Cyclic HIV protease inhibitors: synthesis, conformational analysis, P2/P2' structure-activity relationship, and molecular recognition of cyclic ureas.

Lam, P.Y.Ru, Y.Jadhav, P.K.Aldrich, P.E.DeLucca, G.V.Eyermann, C.J.Chang, C.H.Emmett, G.Holler, E.R.Daneker, W.F.Li, L.Confalone, P.N.McHugh, R.J.Han, Q.Li, R.Markwalder, J.A.Seitz, S.P.Sharpe, T.R.Bacheler, L.T.Rayner, M.M.Klabe, R.M.Shum, L.Winslow, D.L.Kornhauser, D.M.Jackson, D.A.Erickson-Viitanen, S.Hodge, C.N.

(1996) J.Med.Chem. 39: 3514-3525

  • DOI: 10.1021/jm9602571

  • PubMed Abstract: 
  • High-resolution X-ray structures of the complexes of HIV-1 protease (HIV-1PR) with peptidomimetic inhibitors reveal the presence of a structural water molecule which is hydrogen bonded to both the mobile flaps of the enzyme and the two carbonyls flan ...

    High-resolution X-ray structures of the complexes of HIV-1 protease (HIV-1PR) with peptidomimetic inhibitors reveal the presence of a structural water molecule which is hydrogen bonded to both the mobile flaps of the enzyme and the two carbonyls flanking the transition-state mimic of the inhibitors. Using the structure-activity relationships of C2-symmetric diol inhibitors, computed-aided drug design tools, and first principles, we designed and synthesized a novel class of cyclic ureas that incorporates this structural water and preorganizes the side chain residues into optimum binding conformations. Conformational analysis suggested a preference for pseudodiaxial benzylic and pseudodiequatorial hydroxyl substituents and an enantiomeric preference for the RSSR stereochemistry. The X-ray and solution NMR structure of the complex of HIV-1PR and one such cyclic urea, DMP323, confirmed the displacement of the structural water. Additionally, the bound and "unbound" (small-molecule X-ray) ligands have similar conformations. The high degree of preorganization, the complementarity, and the entropic gain of water displacement are proposed to explain the high affinity of these small molecules for the enzyme. The small size probably contributes to the observed good oral bioavailability in animals. Extensive structure-based optimization of the side chains that fill the S2 and S2' pockets of the enzyme resulted in DMP323, which was studied in phase I clinical trials but found to suffer from variable pharmacokinetics in man. This report details the synthesis, conformational analysis, structure-activity relationships, and molecular recognition of this series of C2-symmetry HIV-1PR inhibitors. An initial series of cyclic ureas containing nonsymmetric P2/P2' is also discussed.


    Organizational Affiliation

    DuPont Merck Pharmaceutical Company, DuPont Merck Experimental Station, Wilmington, Delaware 19880-0500, USA. lampy@carbon.dmpc.com




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
HIV-1 PROTEASE
A, B
99Human immunodeficiency virus type 1 group M subtype BMutation(s): 0 
Gene Names: gag-pol
Find proteins for P04585 (Human immunodeficiency virus type 1 group M subtype B)
Go to UniProtKB:  P04585
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
DMP
Query on DMP

Download SDF File 
Download CCD File 
A
[4-R-(-4-ALPHA,5-ALPHA,6-BETA,7-BETA)]-HEXAHYDRO-5,6-BIS(HYDROXY)-[1,3-BIS([4-HYDROXYMETHYL-PHENYL]METHYL)-4,7-BIS(PHENYLMETHYL)]-2H-1,3-DIAZEPINONE
DMP323(INHIBITOR OF DUPONT MERCK)
C35 H38 N2 O5
XCVGQMUMMDXKCY-WZJLIZBTSA-N
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
CSO
Query on CSO
A, B
L-PEPTIDE LINKINGC3 H7 N O3 SCYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Work: 0.189 
  • Space Group: P 61
Unit Cell:
Length (Å)Angle (°)
a = 62.800α = 90.00
b = 62.800β = 90.00
c = 83.500γ = 120.00
Software Package:
Software NamePurpose
X-PLORphasing
X-PLORmodel building
X-PLORrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 1997-04-25 
  • Released Date: 1997-10-15 
  • Deposition Author(s): Ala, P., Chang, C.-H.

Revision History 

  • Version 1.0: 1997-10-15
    Type: Initial release
  • Version 1.1: 2008-03-03
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2012-02-22
    Type: Database references
  • Version 1.4: 2017-11-29
    Type: Derived calculations, Other