1OZS

C-domain of human cardiac troponin C in complex with the inhibitory region of human cardiac troponin I


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 30 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure and dynamics of the C-domain of human cardiac troponin C in complex with the inhibitory region of human cardiac troponin I.

Lindhout, D.A.Sykes, B.D.

(2003) J.Biol.Chem. 278: 27024-27034

  • DOI: 10.1074/jbc.M302497200

  • PubMed Abstract: 
  • Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical im ...

    Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility. Following a Ca2+ signal to begin contraction, the inhibitory region of troponin I comprising residues Thr128-Arg147 relocates from its binding surface on actin to troponin C, triggering movement of troponin-tropomyosin within the thin filament and thereby freeing actin-binding site(s) for interactions with the myosin ATPase of the thick filament to generate the power stroke. The structure of calcium-saturated cardiac troponin C (C-domain) in complex with the inhibitory region of troponin I was determined using multinuclear and multidimensional nuclear magnetic resonance spectroscopy. The structure of this complex reveals that the inhibitory region adopts a helical conformation spanning residues Leu134-Lys139, with a novel orientation between the E- and H-helices of troponin C, which is largely stabilized by electrostatic interactions. By using isotope labeling, we have studied the dynamics of the protein and peptide in the binary complex. The structure of this inhibited complex provides a framework for understanding into interactions within the troponin complex upon heart contraction.


    Organizational Affiliation

    Canadian Institutes of Health Research Group in Protein Structure and Function and the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Troponin C, slow skeletal and cardiac muscles
A
73Homo sapiensGene Names: TNNC1 (TNNC)
Find proteins for P63316 (Homo sapiens)
Go to Gene View: TNNC1
Go to UniProtKB:  P63316
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Troponin I, cardiac muscle
B
20Homo sapiensGene Names: TNNI3 (TNNC1)
Find proteins for P19429 (Homo sapiens)
Go to Gene View: TNNI3
Go to UniProtKB:  P19429
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 30 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2003-09-16
    Type: Initial release
  • Version 1.1: 2008-04-29
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance