1OYG

Crystal structure of Bacillus subtilis levansucrase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.175 
  • R-Value Work: 0.165 
  • R-Value Observed: 0.166 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural framework of fructosyl transfer in Bacillus subtilis levansucrase

Meng, G.Futterer, K.

(2003) Nat Struct Biol 10: 935-941

  • DOI: 10.1038/nsb974
  • Primary Citation of Related Structures:  
    1OYG, 1PT2

  • PubMed Abstract: 
  • Many bacteria and about 40,000 plant species form primary carbohydrate reserves based on fructan; these polymers of beta-D-fructofuranose are thought to confer tolerance to drought and frost in plants. Microbial fructan, the beta(2,6)-linked levan, is synthesized directly from sucrose by levansucrase, which is able to catalyze both sucrose hydrolysis and levan polymerization ...

    Many bacteria and about 40,000 plant species form primary carbohydrate reserves based on fructan; these polymers of beta-D-fructofuranose are thought to confer tolerance to drought and frost in plants. Microbial fructan, the beta(2,6)-linked levan, is synthesized directly from sucrose by levansucrase, which is able to catalyze both sucrose hydrolysis and levan polymerization. The crystal structure of Bacillus subtilis levansucrase, determined to a resolution of 1.5 A, shows a rare five-fold beta-propeller topology with a deep, negatively charged central pocket. Arg360, a residue essential for polymerase activity, lies in a solvent-exposed site adjacent to the central pocket. Mutagenesis data and the sucrose-bound structure of inactive levansucrase E342A, at a resolution of 2.1 A, strongly suggest that three conserved acidic side chains in the central pocket are critical for catalysis, and presumably function as nucleophile (Asp86) and general acid (Glu342), or stabilize the transition state (Asp247).


    Organizational Affiliation

    School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
levansucraseA447Bacillus subtilisMutation(s): 0 
Gene Names: sacB
EC: 2.4.1.10
Find proteins for P05655 (Bacillus subtilis (strain 168))
Explore P05655 
Go to UniProtKB:  P05655
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
EDO
Query on EDO

Download CCD File 
A
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
CA
Query on CA

Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.175 
  • R-Value Work: 0.165 
  • R-Value Observed: 0.166 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 51.11α = 90
b = 67.014β = 90
c = 123.681γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
CCP4data scaling
SOLVEphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Deposited Date: 2003-04-04 
  • Released Date: 2003-10-14 
  • Deposition Author(s): Meng, G., Futterer, K.

Revision History 

  • Version 1.0: 2003-10-14
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Advisory, Version format compliance