1MYF

SOLUTION STRUCTURE OF CARBONMONOXY MYOGLOBIN DETERMINED FROM NMR DISTANCE AND CHEMICAL SHIFT CONSTRAINTS


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 12 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Solution structure of carbonmonoxy myoglobin determined from nuclear magnetic resonance distance and chemical shift constraints.

Osapay, K.Theriault, Y.Wright, P.E.Case, D.A.

(1994) J.Mol.Biol. 244: 183-197

  • DOI: 10.1006/jmbi.1994.1718

  • PubMed Abstract: 
  • Solution NMR structures for sperm whale carbonmonoxy myoglobin have been calculated using 1301 distance restraints determined from nuclear Overhauser enhancement (NOE) measurements on 15N-labeled protein and chemical shift calculations for 385 proton ...

    Solution NMR structures for sperm whale carbonmonoxy myoglobin have been calculated using 1301 distance restraints determined from nuclear Overhauser enhancement (NOE) measurements on 15N-labeled protein and chemical shift calculations for 385 protons. Starting structures included four crystal forms of myoglobin and 12 structures generated by metric matrix distance geometry. Refinements were also carried out using distance restraints alone. In general, the solution conformations are very close to the crystal structures, although the crystal structures are not consistent with some of the observed NOE connectivities. The solution structures are about as far apart from each other (as measured by backbone root-mean-square deviations) as they are from the crystal conformation. Inclusion of chemical shift restraints both tightened the spread of computed structures (especially in the heme pocket region) and led to structures that were closer to the X-ray conformation. The disposition of the side-chains near the heme group could in many cases be determined with considerable confidence, suggesting that a chemical shift analysis may be a useful adjunct to other sources of structural information available from NMR. In particular, this evidence suggests that the distal histidine residue is slightly displaced from the crystal conformation, but still inside the heme pocket at pH 5.6, that the side-chain of Leu89 is in contact with the heme ring but is probably disordered, and that the heme pocket where ligands bind is virtually identical in solution and in the crystal forms.


    Related Citations: 
    • Computational Methods for Determining Protein Structures from NMR Data
      Gippert, G.P.,Yip, P.F.,Wright, P.E.,Case, D.A.
      (1990) Biochem.Pharm. 40: 15


    Organizational Affiliation

    Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
MYOGLOBIN
A
153Physeter macrocephalusMutation(s): 0 
Gene Names: MB
Find proteins for P02185 (Physeter macrocephalus)
Go to Gene View: MB
Go to UniProtKB:  P02185
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
HEM
Query on HEM

Download SDF File 
Download CCD File 
A
PROTOPORPHYRIN IX CONTAINING FE
HEME
C34 H32 Fe N4 O4
KABFMIBPWCXCRK-RGGAHWMASA-L
 Ligand Interaction
CMO
Query on CMO

Download SDF File 
Download CCD File 
A
CARBON MONOXIDE
C O
UGFAIRIUMAVXCW-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 12 
  • Olderado: 1MYF Olderado
Software Package:
Software NamePurpose
AMBERrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1995-02-27
    Type: Initial release
  • Version 1.1: 2008-03-03
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance