1MXV

crystal titration experiments (AMPA co-crystals soaked in 10 mM BrW)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.208 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Probing the Function, Conformational Plasticity, and Dimer-Dimer Contacts of the GluR2 Ligand-Binding Core: Studies of 5-Substituted Willardiines and GluR2 S1S2 in the Crystal

Jin, R.Gouaux, E.

(2003) Biochemistry 42: 5201-5213

  • DOI: 10.1021/bi020632t
  • Primary Citation of Related Structures:  1MXU, 1MXW, 1MXX, 1MXY, 1MXZ, 1MY0, 1MY1, 1MY2, 1MY3, 1MY4

  • PubMed Abstract: 
  • Numerous naturally occurring and synthetic alpha-amino acids act as agonists on (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazole) propionic acid (AMPA) receptors but nevertheless display significant differences in their functional properties and modes o ...

    Numerous naturally occurring and synthetic alpha-amino acids act as agonists on (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazole) propionic acid (AMPA) receptors but nevertheless display significant differences in their functional properties and modes of interaction. The 5-substituted willardiines are a series of compounds that exhibit a range of affinities, act as partial agonists, and give rise to intermediate levels of activation and desensitization. However, the molecular basis for the activities of 5-substituted willardiines has not been conclusively elaborated at the level of atomic resolution. Here we provide insight into the molecular basis of the potency and efficacy elicited by the 5-substituted willardiines on the basis of cocrystal structures with the GluR2 ligand-binding core. We also show that the crystallized ligand-binding core has an affinity for agonists similar to the ligand-binding core in solution. Analysis of multiple crystal lattices suggests modes by which the ligand-binding core dimers interact in the tetrameric receptor. These studies further our understanding of how subtle differences in the structures of agonists are correlated to changes in the conformation of residues and water molecules in the immediate binding pocket and to the degree of domain closure.


    Related Citations: 
    • PARTIAL AGONIST ACTION DEFINED BY STABILIZATION OF SPECIFIC CONFORMATIONAL SUBSTATES
      Jin, R.,Bank, T.,Mayer, M.L.,Traynelis, S.,Gouaux, E.
      () TO BE PUBLISHED --: --


    Organizational Affiliation

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
GLUTAMATE RECEPTOR 2
A, B, C
263Rattus norvegicusGene Names: Gria2 (Glur2)
Find proteins for P19491 (Rattus norvegicus)
Go to UniProtKB:  P19491
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A, B, C
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.208 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 114.493α = 90.00
b = 163.286β = 90.00
c = 47.960γ = 90.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
DENZOdata reduction
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2002-10-03 
  • Released Date: 2003-06-10 
  • Deposition Author(s): Jin, R., Gouaux, E.

Revision History 

  • Version 1.0: 2003-06-10
    Type: Initial release
  • Version 1.1: 2008-04-28
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2017-08-23
    Type: Refinement description, Source and taxonomy