1MV1

The Tandem, Sheared PA Pairs in 5'(rGGCPAGCCU)2


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Molecular Recognition in Purine-Rich Internal Loops: Thermodynamic, Structural, and Dynamic Consequences of Purine for Adenine Substitutions in 5'(rGGCAAGCCU)2

Znosko, B.M.Burkard, M.E.Krugh, T.R.Turner, D.H.

(2002) Biochemistry 41: 14978-14987

  • DOI: https://doi.org/10.1021/bi0203278
  • Primary Citation of Related Structures:  
    1MV1, 1MV2, 1MV6

  • PubMed Abstract: 

    The contribution of amino groups to the thermodynamics, structure, and dynamics of tandem A.A mismatches is investigated by substitution of purine (P) for adenine (A) within the RNA duplex, 5'(rGGCAAGCCU)(2), to give 5'(rGGCPAGCCU)(2), 5'(rGGCAPGCCU)(2), and 5'(rGGCPPGCCU)(2). The 5'(rGGCAAGCCU)(2) duplex has sheared A(anti).A(anti) (A.A trans Hoogsteen/Sugar-edge) pairs in which the A5 amino group is involved in hydrogen bonds but the A4 amino group is not [Znosko, B. M., Burkard, M. E., Schroeder, S. J., Krugh, T. R., and Turner, D. H. (2002) Biochemistry 41, 14969-14977]. In comparison to 5'(rGGCAAGCCU)(2), replacing the amino group of A4 with a hydrogen stabilizes the duplex by 1.3 kcal/mol, replacement of the A5 amino group destabilizes the duplex by 0.6 kcal/mol, and replacement of both A4 and A5 amino groups destabilizes the duplex by 0.8 kcal/mol. In NMR structures, the P.A noncanonical pairs of the 5'(rGGCPAGCCU)(2) duplex have a sheared anti-anti structure (P.A trans Hoogsteen/Sugar-edge) with P4.A5 interstrand hydrogen bonding and A5 bases that interstrand stack, similar to the structure of 5'(rGGCAAGCCU)(2). In contrast, the A.P pairs of the 5'(rGGCAPGCCU)(2) duplex have a face-to-face conformation (A.P trans Watson-Crick/Watson-Crick) with intrastrand stacking resembling typical A-form geometry. Although the P5 bases in 5'(rGGCPPGCCU)(2) are involved in an interstrand stack, the loop region is largely undefined. The results illustrate that both hydrogen-bonded and non-hydrogen-bonded amino groups play important roles in determining the thermodynamic, structural, and dynamic characteristics of purine rich internal loops.


  • Organizational Affiliation

    Department of Chemistry, University of Rochester, New York 14627-0216, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-R(*GP*GP*CP*(P5P)P*AP*GP*CP*CP*U)-3'
A, B
9N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-12-18
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-05-22
    Changes: Data collection