1MT9

Viability of a drug-resistant HIV-1 protease mutant: structural insights for better antiviral therapy


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.179 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Viability of drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy

Prabu-Jeyabalan, M.Nalivaika, E.A.King, N.M.Schiffer, C.A.

(2003) J Virol 77: 1305-1315

  • DOI: 10.1128/jvi.77.2.1306-1315.2003
  • Primary Citation of Related Structures:  
    1MT7, 1N49, 1MT9, 1MT8, 1MTB

  • PubMed Abstract: 
  • Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patien ...

    Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more closely with the drugs than with the natural substrate peptides. The V82A mutation compromises these interactions with the drugs while not greatly affecting the substrate interactions, which is consistent with previously published kinetic data. Coupled with our earlier observations, these findings suggest that future inhibitor design may reduce the probability of the appearance of drug-resistant mutations by targeting residues that are essential for substrate recognition.


    Related Citations: 
    • How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease
      Prabu-Jeyabalan, M., Nalivaika, E.A., Schiffer, C.A.
      (2000) J Mol Biol 301: 1207
    • Substrate shape determines specificity of recognition for HIV-1 protease: Analysis of crystal structures of six substrate complexes
      Prabu-Jeyabalan, M., Nalivaika, E.A., Schiffer, C.A.
      (2002) Structure 10: 369
    • Lack of synergy for inhibitors targeting a multi-drug resistant HIV-1 protease
      King, N.M., Melnick, L., Prabu-Jeyabalan, M., Nalivaika, E.A., Yang, S.-S., Gao, Y., Nie, X., Zepp, C., Heefner, D.L., Schiffer, C.A.
      (2002) Protein Sci 11: 418

    Organizational Affiliation

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester 01605, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
PROTEASE RETROPEPSINAB99Human immunodeficiency virus 1Mutation(s): 3 
EC: 3.4.23.16 (PDB Primary Data), 2.7.7.49 (UniProt), 2.7.7.7 (UniProt), 3.1.26.13 (UniProt), 3.1.13.2 (UniProt), 2.7.7 (UniProt), 3.1 (UniProt)
Find proteins for P03369 (Human immunodeficiency virus type 1 group M subtype B (isolate ARV2/SF2))
Explore P03369 
Go to UniProtKB:  P03369
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
p1-p6 Gag substrate decapeptideP10N/AMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download CCD File 
A, B
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.179 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 51.265α = 90
b = 59.133β = 90
c = 61.926γ = 90
Software Package:
Software NamePurpose
SCALEPACKdata scaling
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2003-01-07
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-11
    Changes: Refinement description