1LVG

Crystal structure of mouse guanylate kinase in complex with GMP and ADP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.231 
  • R-Value Work: 0.188 

wwPDB Validation 3D Report Full Report


This is version 1.4 of the entry. See complete history

Literature

Structural characterization of the closed conformation of mouse guanylate kinase.

Sekulic, N.Shuvalova, L.Spangenberg, O.Konrad, M.Lavie, A.

(2002) J.Biol.Chem. 277: 30236-30243

  • DOI: 10.1074/jbc.M204668200

  • PubMed Abstract: 
  • Guanylate kinase (GMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryl transfer from ATP to GMP to yield ADP and GDP. In addition to phosphorylating GMP, antiviral prodrugs such as acyclovir, ganciclovir, and carbovir a ...

    Guanylate kinase (GMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryl transfer from ATP to GMP to yield ADP and GDP. In addition to phosphorylating GMP, antiviral prodrugs such as acyclovir, ganciclovir, and carbovir and anticancer prodrugs such as the thiopurines are dependent on GMPK for their activation. Hence, structural information on mammalian GMPK could play a role in the design of improved antiviral and antineoplastic agents. Here we present the structure of the mouse enzyme in an abortive complex with the nucleotides ADP and GMP, refined at 2.1 A resolution with a final crystallographic R factor of 0.19 (R(free) = 0.23). Guanylate kinase is a member of the nucleoside monophosphate (NMP) kinase family, a family of enzymes that despite having a low primary structure identity share a similar fold, which consists of three structurally distinct regions termed the CORE, LID, and NMP-binding regions. Previous studies on the yeast enzyme have shown that these parts move as rigid bodies upon substrate binding. It has been proposed that consecutive binding of substrates leads to "closing" of the active site bringing the NMP-binding and LID regions closer to each other and to the CORE region. Our structure, which is the first of any guanylate kinase with both substrates bound, supports this hypothesis. It also reveals the binding site of ATP and implicates arginines 44, 137, and 148 (in addition to the invariant P-loop lysine) as candidates for catalyzing the chemical step of the phosphoryl transfer.


    Organizational Affiliation

    University of Illinois at Chicago, Department of Biochemistry and Molecular Biology, Chicago, Illinois 60612 and the Max Planck Institute for Biophysical Chemistry, Department of Molecular Genetics, Am Fassberg 11, 37077 Göttingen, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Guanylate kinase
A
198Mus musculusMutation(s): 0 
Gene Names: Guk1 (Gmk)
EC: 2.7.4.8
Find proteins for Q64520 (Mus musculus)
Go to UniProtKB:  Q64520
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
K
Query on K

Download SDF File 
Download CCD File 
A
POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
 Ligand Interaction
ADP
Query on ADP

Download SDF File 
Download CCD File 
A
ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
 Ligand Interaction
5GP
Query on 5GP

Download SDF File 
Download CCD File 
A
GUANOSINE-5'-MONOPHOSPHATE
C10 H14 N5 O8 P
RQFCJASXJCIDSX-UUOKFMHZSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.231 
  • R-Value Work: 0.188 
  • Space Group: P 41 21 2
Unit Cell:
Length (Å)Angle (°)
a = 67.241α = 90.00
b = 67.241β = 90.00
c = 108.696γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
AMoREphasing
XDSdata reduction
XDSdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2002-12-11
    Type: Initial release
  • Version 1.1: 2008-04-28
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2017-10-11
    Type: Refinement description
  • Version 1.4: 2018-04-04
    Type: Data collection