1LG4

NMR structure of the human doppel protein fragment 24-152


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

NMR Structure of the Human Doppel Protein

Luhrs, T.Riek, R.Guntert, P.Wuthrich, K.

(2003) J Mol Biol 326: 1549-1557

  • DOI: https://doi.org/10.1016/s0022-2836(02)01471-7
  • Primary Citation of Related Structures:  
    1LG4

  • PubMed Abstract: 

    The NMR structure of the recombinant human doppel protein, hDpl(24-152), contains a flexibly disordered "tail" comprising residues 24-51, and a globular domain extending from residues 52 to 149 for which a detailed structure was obtained. The globular domain contains four alpha-helices comprising residues 72-80 (alpha1), 101-115 (alpha2(a)), 117-121 (alpha2(b)), and 127-141 (alpha3), and a short two-stranded anti-parallel beta-sheet comprising residues 58-60 (beta1) and 88-90 (beta2). The fold of the hDpl globular domain thus coincides nearly identically with the structure of the murine Dpl protein. There are close similarities with the human prion protein (hPrP) but, similar to the situation with the corresponding murine proteins, hDpl shows marked local differences when compared to hPrP: the beta-sheet is flipped by 180 degrees with respect to the molecular scaffold formed by the four helices, and the beta1-strand is shifted by two residues toward the C terminus. A large solvent-accessible hydrophobic cleft is formed on the protein surface between beta2 and alpha3, which has no counterpart in hPrP. The helix alpha2 of hPrP is replaced by two shorter helices, alpha2(a) and alpha2(b). The helix alpha3 is shortened by more than two turns when compared with alpha3 of hPrP, which is enforced by the positioning of the second disulfide bond in hDpl. The C-terminal peptide segment 144-149 folds back onto the loop connecting beta2 and alpha2. All but four of the 20 conserved residues in the globular domains of hPrP and hDpl appear to have a structural role in maintaining a PrP-type fold. The conservation of R76, E96, N110 and R134 in hDpl, corresponding to R148, E168, N183 and R208 in hPrP suggests that these amino acid residues might have essential roles in the so far unknown functions of PrP and Dpl in healthy organisms.


  • Organizational Affiliation

    Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland. luehrs@salk.edu


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Prion-like protein129Homo sapiensMutation(s): 0 
Gene Names: Prnd
UniProt & NIH Common Fund Data Resources
Find proteins for Q9UKY0 (Homo sapiens)
Explore Q9UKY0 
Go to UniProtKB:  Q9UKY0
PHAROS:  Q9UKY0
GTEx:  ENSG00000171864 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9UKY0
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-02-25
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Database references, Derived calculations