1KGN

R2F from Corynebacterium Ammoniagenes in its oxidised, Fe containing, form


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.158 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal structure of the di-iron/radical protein of ribonucleotide reductase from Corynebacterium ammoniagenes.

Hogbom, M.Huque, Y.Sjoberg, B.M.Nordlund, P.

(2002) Biochemistry 41: 1381-1389

  • Primary Citation of Related Structures:  1KGO, 1KGP

  • PubMed Abstract: 
  • Ribonucleotide reductase (RNR) is the enzyme performing de novo production of the four deoxyribonucleotides needed for DNA synthesis. All mammals as well as some prokaryotes express the class I enzyme which is an alpha(2)beta(2) protein. The smaller ...

    Ribonucleotide reductase (RNR) is the enzyme performing de novo production of the four deoxyribonucleotides needed for DNA synthesis. All mammals as well as some prokaryotes express the class I enzyme which is an alpha(2)beta(2) protein. The smaller of the homodimers, denoted R2, contains a di-iron carboxylate site which, upon reaction with molecular oxygen, generates a stable tyrosyl radical needed for catalysis. The three-dimensional structure of the oxidized class Ib RNR R2 from Corynebacterium ammoniagenes has been determined at 1.85 A resolution and refined to an R-value of 15.8% (R(free) = 21.3%). In addition, structures of both the reduced iron-containing, and manganese-substituted protein have been solved. The C. ammoniagenes R2 has been proposed to be manganese-dependent. The present structure provides evidence that manganese is not oxidized by the protein, in agreement with recent biochemical data, and that no obvious structural abnormalities are seen in the oxidized and reduced iron-containing forms, giving further support that the protein is indeed an iron-dependent RNR R2. The di-manganese structure also provides an explanation for the magnetic properties of this site. The structure of the oxidized C. ammoniagenes R2 also reveals an additional water molecule bridging the radical and the iron site, which has not previously been seen in any other R2 structure and which might have important mechanistic implications.


    Organizational Affiliation

    Department of Biochemistry and Biophysics, Arrhenius Laboratories A4, Stockholm University, SE-10691 Stockholm, Sweden.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Ribonucleotide reductase protein R2F
A, B, C, D
329Corynebacterium ammoniagenesGene Names: nrdF
EC: 1.17.4.1
Find proteins for O69274 (Corynebacterium ammoniagenes)
Go to UniProtKB:  O69274
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FE
Query on FE

Download SDF File 
Download CCD File 
A, B, C, D
FE (III) ION
Fe
VTLYFUHAOXGGBS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.158 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 50.813α = 90.00
b = 90.705β = 91.24
c = 136.810γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
CNSphasing
CNSrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2001-12-21
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance