1KCO

Structure of e131 Zeta Peptide, a Potent Antagonist of the High-Affinity IgE Receptor


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with acceptable covalent geometry,structures with the least restraint violations 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Stable "zeta" peptides that act as potent antagonists of the high-affinity IgE receptor.

Nakamura, G.R.Reynolds, M.E.Chen, Y.M.Starovasnik, M.A.Lowman, H.B.

(2002) Proc.Natl.Acad.Sci.USA 99: 1303-1308

  • DOI: 10.1073/pnas.022635599
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Recently we described a family of peptides, unrelated in sequence to IgE, that form stable beta-hairpins in solution and inhibit IgE activity in the microM range [Nakamura, G. R., Starovasnik, M. A., Reynolds, M. E. & Lowman, H. B. (2001) Biochemistr ...

    Recently we described a family of peptides, unrelated in sequence to IgE, that form stable beta-hairpins in solution and inhibit IgE activity in the microM range [Nakamura, G. R., Starovasnik, M. A., Reynolds, M. E. & Lowman, H. B. (2001) Biochemistry 40, 9828-9835]. Using an expanded set of peptide-phage libraries, we found a simpler motif, X(2)CPX(2)CYX, for binding to the high-affinity IgE receptor. In solution, one of these peptides spontaneously formed a covalent antiparallel dimer. We subsequently linked these monomers in a single-chain construct on phage and optimized receptor binding. Ultimately, peptides with 30 nM affinity were produced. NMR studies showed that the peptide adopts a stable fold consisting of two "zeta" (zeta)-shaped moieties. Structure-activity analyses reveal a single binding site created by the zeta-dimer, with two tyrosine residues important for structural stability and two proline residues important for Fc epsilon RI binding. The peptides inhibit histamine release from cultured cells and are extremely stable in biological fluids. The zeta peptides appear to act as competitive IgE inhibitors and suggest possibilities for design of novel IgE antagonists.


    Organizational Affiliation

    Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
e131 Zeta Peptide
A
22N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
NH2
Query on NH2
A
NON-POLYMERH2 N

--

Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with acceptable covalent geometry,structures with the least restraint violations 
  • Olderado: 1KCO Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2002-03-06
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance