1IK6

3D structure of the E1beta subunit of pyruvate dehydrogenase from the archeon Pyrobaculum aerophilum


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.212 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

3D structure and significance of the GPhiXXG helix packing motif in tetramers of the E1beta subunit of pyruvate dehydrogenase from the archeon Pyrobaculum aerophilum.

Kleiger, G.Perry, J.Eisenberg, D.

(2001) Biochemistry 40: 14484-14492


  • PubMed Abstract: 
  • As part of a structural genomics project, we have determined the 2.0 A structure of the E1beta subunit of pyruvate dehydrogenase from Pyrobaculum aerophilum (PA), a thermophilic archaeon. The overall fold of E1beta from PA is closely similar to the p ...

    As part of a structural genomics project, we have determined the 2.0 A structure of the E1beta subunit of pyruvate dehydrogenase from Pyrobaculum aerophilum (PA), a thermophilic archaeon. The overall fold of E1beta from PA is closely similar to the previously determined E1beta structures from humans (HU) and P. putida (PP). However, unlike the HU and PP structures, the PA structure was determined in the absence of its partner subunit, E1alpha. Significant structural rearrangements occur in E1beta when its E1alpha partner is absent, including rearrangement of several secondary structure elements such as helix C. Helix C is buried by E1alpha in the HU and PP structures, but makes crystal contacts in the PA structure that lead to an apparent beta(4) tetramer. Static light scattering and sedimentation velocity data are consistent with the formation of PA E1beta tetramers in solution. The interaction of helix C with its symmetry-related counterpart stabilizes the tetrameric interface, where two glycine residues on the same face of one helix create a packing surface for the other helix. This GPhiXXG helix-helix interaction motif has previously been found in interacting transmembrane helices, and is found here at the E1alpha-E1beta interface for both the HU and PP alpha(2)beta(2) tetramers. As a case study in structural genomics, this work illustrates that comparative analysis of protein structures can identify the structural significance of a sequence motif.


    Organizational Affiliation

    Howard Hughes Medical Institute, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
pyruvate dehydrogenase
A
369Pyrobaculum aerophilum (strain ATCC 51768 / IM2 / DSM 7523 / JCM 9630 / NBRC 100827)Mutation(s): 0 
Find proteins for Q8ZUR7 (Pyrobaculum aerophilum (strain ATCC 51768 / IM2 / DSM 7523 / JCM 9630 / NBRC 100827))
Go to UniProtKB:  Q8ZUR7
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.212 
  • Space Group: I 2 2 2
Unit Cell:
Length (Å)Angle (°)
a = 65.241α = 90.00
b = 84.543β = 90.00
c = 131.380γ = 90.00
Software Package:
Software NamePurpose
AMoREphasing
CNSrefinement
SCALEPACKdata scaling
DENZOdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2001-12-19
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance