1IIM

thymidylyltransferase complexed with TTP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.198 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization.

Barton, W.A.Lesniak, J.Biggins, J.B.Jeffrey, P.D.Jiang, J.Rajashankar, K.R.Thorson, J.S.Nikolov, D.B.

(2001) Nat.Struct.Mol.Biol. 8: 545-551

  • DOI: 10.1038/88618
  • Primary Citation of Related Structures:  1IIN

  • PubMed Abstract: 
  • Metabolite glycosylation is affected by three classes of enzymes: nucleotidylyltransferases, which activate sugars as nucleotide diphospho-derivatives, intermediate sugar-modifying enzymes and glycosyltransferases, which transfer the final derivatize ...

    Metabolite glycosylation is affected by three classes of enzymes: nucleotidylyltransferases, which activate sugars as nucleotide diphospho-derivatives, intermediate sugar-modifying enzymes and glycosyltransferases, which transfer the final derivatized activated sugars to aglycon substrates. One of the first crystal structures of an enzyme responsible for the first step in this cascade, alpha-D-glucopyranosyl phosphate thymidylyltransferase (Ep) from Salmonella, in complex with product (UDP-Glc) and substrate (dTTP) is reported at 2.0 A and 2.1 A resolution, respectively. These structures, in conjunction with the kinetic characterization of Ep, clarify the catalytic mechanism of this important enzyme class. Structure-based engineering of Ep produced modified enzymes capable of utilizing 'unnatural' sugar phosphates not accepted by wild type Ep. The demonstrated ability to alter nucleotidylyltransferase specificity by design is an integral component of in vitro glycosylation systems developed for the production of diverse glycorandomized libraries.


    Organizational Affiliation

    Cellular Biochemistry and Biophysics Program, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, 1275 York Avenue, New York 10021, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
glucose-1-phosphate thymidylyltransferase
A, B
292Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720)Gene Names: rmlA (rfbA)
EC: 2.7.7.24
Find proteins for P26393 (Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720))
Go to UniProtKB:  P26393
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
TTP
Query on TTP

Download SDF File 
Download CCD File 
A, B
THYMIDINE-5'-TRIPHOSPHATE
C10 H17 N2 O14 P3
NHVNXKFIZYSCEB-XLPZGREQSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.198 
  • Space Group: P 43 21 2
Unit Cell:
Length (Å)Angle (°)
a = 120.060α = 90.00
b = 120.060β = 90.00
c = 94.410γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
CNSrefinement
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2001-05-09
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance