1I5S

CRYSTAL STRUCTURE OF THE KIF1A MOTOR DOMAIN COMPLEXED WITH MG-ADP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.2 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.210 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Switch-based mechanism of kinesin motors

Kikkawa, M.Sablin, E.P.Okada, Y.Yajima, H.Fletterick, R.J.Hirokawa, N.

(2001) Nature 411: 439-445

  • DOI: 10.1038/35078000
  • Primary Citation of Related Structures:  1I6I, 1IA0

  • PubMed Abstract: 
  • Kinesin motors are specialized enzymes that use hydrolysis of ATP to generate force and movement along their cellular tracks, the microtubules. Although numerous biochemical and biophysical studies have accumulated much data that link microtubule-ass ...

    Kinesin motors are specialized enzymes that use hydrolysis of ATP to generate force and movement along their cellular tracks, the microtubules. Although numerous biochemical and biophysical studies have accumulated much data that link microtubule-assisted ATP hydrolysis to kinesin motion, the structural view of kinesin movement remains unclear. This study of the monomeric kinesin motor KIF1A combines X-ray crystallography and cryo-electron microscopy, and allows analysis of force-generating conformational changes at atomic resolution. The motor is revealed in its two functionally critical states-complexed with ADP and with a non-hydrolysable analogue of ATP. The conformational change observed between the ADP-bound and the ATP-like structures of the KIF1A catalytic core is modular, extends to all kinesins and is similar to the conformational change used by myosin motors and G proteins. Docking of the ADP-bound and ATP-like crystallographic models of KIF1A into the corresponding cryo-electron microscopy maps suggests a rationale for the plus-end directional bias associated with the kinesin catalytic core.


    Organizational Affiliation

    Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
KINESIN-LIKE PROTEIN KIF1A
A
367Mus musculusGene Names: Kif1a (Atsv, Kif1)
Find proteins for P33173 (Mus musculus)
Go to UniProtKB:  P33173
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ADP
Query on ADP

Download SDF File 
Download CCD File 
A
ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.2 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.210 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 41.672α = 90.00
b = 51.925β = 90.00
c = 157.064γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
CNSphasing
CNSrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2001-05-30
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance