1GTP

GTP CYCLOHYDROLASE I


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Work: 0.189 
  • R-Value Observed: 0.189 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Atomic structure of GTP cyclohydrolase I.

Nar, H.Huber, R.Meining, W.Schmid, C.Weinkauf, S.Bacher, A.

(1995) Structure 3: 459-466

  • DOI: https://doi.org/10.1016/s0969-2126(01)00179-4
  • Primary Citation of Related Structures:  
    1GTP

  • PubMed Abstract: 

    Tetrahydrobiopterin serves as the cofactor for enzymes involved in neurotransmitter biosynthesis and as regulatory factor in immune cell proliferation and the biosynthesis of melanin. The biosynthetic pathway to tetrahydrobiopterin consists of three steps starting from GTP. The initial reaction is catalyzed by GTP cyclohdrolase I (GTP-CH-I) and involves the chemically complex transformation of the purine into the pterin ring system. The crystal structure of the Escherichia coli GTP-CH-I was solved by single isomorphous replacement and molecular averaging at 3.0 A resolution. The functional enzyme is a homodecameric complex with D5 symmetry, forming a torus with dimensions 65 A x 100 A. The pentameric subunits are constructed via an unprecedented cyclic arrangement of the four-stranded antiparallel beta-sheets of the five monomers to form a 20-stranded antiparallel beta-barrel of 35 A diameter. Two pentamers are tightly associated by intercalation of two antiparallel helix pairs positioned close to the subunit N termini. The C-terminal domain of the GTP-CH-I monomer is topologically identical to a subunit of the homohexameric 6-pyruvoyl tetrahydropterin synthase, the enzyme catalyzing the second step in tetrahydrobiopterin biosynthesis. The active site of GTP-CH-I is located at the interface of three subunits. It represents a novel GTP-binding site, distinct from the one found in G proteins, with a catalytic apparatus that suggest involvement of histidines and, possibly, a cystine in the unusual reaction mechanism. Despite the lack of significant sequence homology between GTP-CH-I and 6-pyruvoyl tetrahydropterin synthase, the two proteins, which catalyze consecutive steps in tetrahydrobiopterin biosynthesis, share a common subunit fold and oligomerization mode. In addition, the active centres have an identical acceptor site for the 2-amino-4-oxo pyrimidine moiety of their substrates which suggests an evolutionarily conserved protein fold designed for pterin biosynthesis.


  • Organizational Affiliation

    Max Planck Institute für Biochemie, Abteilung Strukturforschung, Martinsried, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GTP CYCLOHYDROLASE I
A, B, C, D, E
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T
221Escherichia coliMutation(s): 0 
EC: 3.5.4.16
UniProt
Find proteins for P0A6T5 (Escherichia coli (strain K12))
Explore P0A6T5 
Go to UniProtKB:  P0A6T5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A6T5
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download Ideal Coordinates CCD File 
AA [auth G]
BA [auth H]
CA [auth I]
DA [auth J]
EA [auth K]
AA [auth G],
BA [auth H],
CA [auth I],
DA [auth J],
EA [auth K],
FA [auth L],
GA [auth L],
HA [auth N],
IA [auth O],
JA [auth P],
KA [auth Q],
LA [auth R],
MA [auth S],
NA [auth T],
U [auth A],
V [auth A],
W [auth C],
X [auth D],
Y [auth E],
Z [auth F]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Work: 0.189 
  • R-Value Observed: 0.189 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 204.2α = 90
b = 210.4β = 95.8
c = 71.8γ = 90
Software Package:
Software NamePurpose
MOSFLMdata reduction
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-11-08
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance