1GFY

RESIDUE 259 IS A KEY DETERMINANT OF SUBSTRATE SPECIFICITY OF PROTEIN-TYROSINE PHOSPHATASE 1B AND ALPHA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.13 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.191 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Residue 259 is a key determinant of substrate specificity of protein-tyrosine phosphatases 1B and alpha.

Peters, G.H.Iversen, L.F.Branner, S.Andersen, H.S.Mortensen, S.B.Olsen, O.H.Moller, K.B.Moller, N.P.

(2000) J.Biol.Chem. 275: 18201-18209

  • DOI: 10.1074/jbc.M910273199

  • PubMed Abstract: 
  • The aim of this study was to define the structural elements that determine the differences in substrate recognition capacity of two protein-tyrosine phosphatases (PTPs), PTP1B and PTPalpha, both suggested to be negative regulators of insulin signalin ...

    The aim of this study was to define the structural elements that determine the differences in substrate recognition capacity of two protein-tyrosine phosphatases (PTPs), PTP1B and PTPalpha, both suggested to be negative regulators of insulin signaling. Since the Ac-DADE(pY)L-NH(2) peptide is well recognized by PTP1B, but less efficiently by PTPalpha, it was chosen as a tool for these analyses. Calpha regiovariation analyses and primary sequence alignments indicate that residues 47, 48, 258, and 259 (PTP1B numbering) define a selectivity-determining region. By analyzing a set of DADE(pY)L analogs with a series of PTP mutants in which these four residues were exchanged between PTP1B and PTPalpha, either in combination or alone, we here demonstrate that the key selectivity-determining residue is 259. In PTPalpha, this residue is a glutamine causing steric hindrance and in PTP1B a glycine allowing broad substrate recognition. Significantly, replacing Gln(259) with a glycine almost turns PTPalpha into a PTP1B-like enzyme. By using a novel set of PTP inhibitors and x-ray crystallography, we further provide evidence that Gln(259) in PTPalpha plays a dual role leading to restricted substrate recognition (directly via steric hindrance) and reduced catalytic activity (indirectly via Gln(262)). Both effects may indicate that PTPalpha regulates highly selective signal transduction processes.


    Organizational Affiliation

    Technical University of Denmark, Department of Chemistry, Membrane and Statistical Physics Group (MEMPHYS), DK-2800 Lyngby, Denmark. ghp@kemi.dtu.dk




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (PROTEIN-TYROSINE PHOSPHATASE 1B)
A
298Homo sapiensMutation(s): 4 
Gene Names: PTPN1 (PTP1B)
EC: 3.1.3.48
Find proteins for P18031 (Homo sapiens)
Go to Gene View: PTPN1
Go to UniProtKB:  P18031
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
COL
Query on COL

Download SDF File 
Download CCD File 
A
2-(OXALYL-AMINO)-4,7-DIHYDRO-5H-THIENO[2,3-C]THIOPYRAN-3-CARBOXYLIC ACID
C10 H9 N O5 S2
ZPDVRWNOCOREGF-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
COLKi: 8300 - 8317.6 nM (97) BINDINGDB
COLKi: 8320 nM PDBBIND
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.13 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.191 
  • Space Group: P 31 2 1
Unit Cell:
Length (Å)Angle (°)
a = 88.195α = 90.00
b = 88.195β = 90.00
c = 103.728γ = 120.00
Software Package:
Software NamePurpose
X-PLORrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2000-06-26 
  • Released Date: 2000-07-04 
  • Deposition Author(s): Iversen, L.F.

Revision History 

  • Version 1.0: 2000-07-04
    Type: Initial release
  • Version 1.1: 2008-04-26
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2018-03-07
    Type: Data collection