1G0S

THE CRYSTAL STRUCTURE OF THE E.COLI ADP-RIBOSE PYROPHOSPHATASE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.192 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family.

Gabelli, S.B.Bianchet, M.A.Bessman, M.J.Amzel, L.M.

(2001) Nat Struct Biol 8: 467-472

  • DOI: 10.1038/87647
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Regulation of cellular levels of ADP-ribose is important in preventing nonenzymatic ADP-ribosylation of proteins. The Escherichia coli ADP-ribose pyrophosphatase, a Nudix enzyme, catalyzes the hydrolysis of ADP-ribose to ribose-5-P and AMP, compounds ...

    Regulation of cellular levels of ADP-ribose is important in preventing nonenzymatic ADP-ribosylation of proteins. The Escherichia coli ADP-ribose pyrophosphatase, a Nudix enzyme, catalyzes the hydrolysis of ADP-ribose to ribose-5-P and AMP, compounds that can be recycled as part of nucleotide metabolism. The structures of the apo enzyme, the active enzyme and the complex with ADP-ribose were determined to 1.9 A, 2.7 A and 2.3 A, respectively. The structures reveal a symmetric homodimer with two equivalent catalytic sites, each formed by residues of both monomers, requiring dimerization through domain swapping for substrate recognition and catalytic activity. The structures also suggest a role for the residues conserved in each Nudix subfamily. The Nudix motif residues, folded as a loop-helix-loop tailored for pyrophosphate hydrolysis, compose the catalytic center; residues conferring substrate specificity occur in regions of the sequence removed from the Nudix motif. This segregation of catalytic and recognition roles provides versatility to the Nudix family.


    Organizational Affiliation

    Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
HYPOTHETICAL 23.7 KDA PROTEIN IN ICC-TOLC INTERGENIC REGIONA, B209Escherichia coliMutation(s): 0 
EC: 3.6.1.13
Find proteins for Q93K97 (Escherichia coli (strain K12))
Explore Q93K97 
Go to UniProtKB:  Q93K97
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.192 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.93α = 90
b = 67.89β = 90
c = 98.07γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
SOLVEphasing
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2001-05-02
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance