1FU1

CRYSTAL STRUCTURE OF HUMAN XRCC4


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.231 
  • R-Value Observed: 0.246 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of the Xrcc4 DNA repair protein and implications for end joining.

Junop, M.S.Modesti, M.Guarne, A.Ghirlando, R.Gellert, M.Yang, W.

(2000) EMBO J 19: 5962-5970

  • DOI: 10.1093/emboj/19.22.5962
  • Primary Citation of Related Structures:  
    1FU1

  • PubMed Abstract: 
  • XRCC4 is essential for carrying out non-homologous DNA end joining (NHEJ) in all eukaryotes and, in particular, V(D)J recombination in vertebrates. Xrcc4 protein forms a complex with DNA ligase IV that rejoins two DNA ends in the last step of V(D)J recombination and NHEJ to repair double strand breaks ...

    XRCC4 is essential for carrying out non-homologous DNA end joining (NHEJ) in all eukaryotes and, in particular, V(D)J recombination in vertebrates. Xrcc4 protein forms a complex with DNA ligase IV that rejoins two DNA ends in the last step of V(D)J recombination and NHEJ to repair double strand breaks. XRCC4-defective cells are extremely sensitive to ionizing radiation, and disruption of the XRCC4 gene results in embryonic lethality in mice. Here we report the crystal structure of a functional fragment of Xrcc4 at 2.7 A resolution. Xrcc4 protein forms a strikingly elongated dumb-bell-like tetramer. Each of the N-terminal globular head domains consists of a beta-sandwich and a potentially DNA-binding helix- turn-helix motif. The C-terminal stalk comprising a single alpha-helix >120 A in length is partly incorporated into a four-helix bundle in the Xrcc4 tetramer and partly involved in interacting with ligase IV. The Xrcc4 structure suggests a possible mode of coupling ligase IV association with DNA binding for effective ligation of DNA ends.


    Organizational Affiliation

    Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
DNA REPAIR PROTEIN XRCC4A, B203Homo sapiensMutation(s): 5 
Gene Names: XRCC4
UniProt & NIH Common Fund Data Resources
Find proteins for Q13426 (Homo sapiens)
Explore Q13426 
Go to UniProtKB:  Q13426
PHAROS:  Q13426
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ACY
Query on ACY

Download Ideal Coordinates CCD File 
C [auth A], D [auth A], E [auth A], F [auth A]ACETIC ACID
C2 H4 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-N
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
CAS
Query on CAS
A, BL-PEPTIDE LINKINGC5 H12 As N O2 SCYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.231 
  • R-Value Observed: 0.246 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 164.892α = 90
b = 74.793β = 103.97
c = 87.307γ = 90
Software Package:
Software NamePurpose
SOLVEphasing
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-12-11
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance