1FRR

CRYSTAL STRUCTURE OF [2FE-2S] FERREDOXIN I FROM EQUISETUM ARVENSE AT 1.8 ANGSTROMS RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure of [2Fe-2S] ferredoxin I from Equisetum arvense at 1.8 A resolution.

Ikemizu, S.Bando, M.Sato, T.Morimoto, Y.Tsukihara, T.Fukuyama, K.

(1994) Acta Crystallogr.,Sect.D 50: 167-174

  • DOI: 10.1107/S0907444993009588

  • PubMed Abstract: 
  • Ferredoxin I (Fd I) from Equisetum arvense is an iron-sulfur protein composed of 95 amino-acid residues and one [2Fe-2S] cluster. It crystallized in the space group P2(1), a = 30.4, b = 57.4, c = 47.5 A and beta = 78.7 degrees with two molecules per ...

    Ferredoxin I (Fd I) from Equisetum arvense is an iron-sulfur protein composed of 95 amino-acid residues and one [2Fe-2S] cluster. It crystallized in the space group P2(1), a = 30.4, b = 57.4, c = 47.5 A and beta = 78.7 degrees with two molecules per asymmetric unit. X-ray diffraction data up to 1.8 A resolution were collected by using a Rigaku four-circle diffractometer. The initial model of Fd I, which was derived by the molecular replacement method using a structure of the Fd I from the blue-green alga Aphanothece sacrum, was refined by molecular dynamics simulation and a least-squares minimization with stereochemical restraints. Positional parameters and isotropic temperature factors for 1420 non-H protein atoms and 183 water molecules were refined on 13 838 observed structure factors (F(o) > sigma(Fo)) between 10.0 and 1.8 A resolution. The final Rfactor was 17.0%, and the standard deviation of atomic position estimated by Luzzati plot [Luzzati (1952). Acta Cryst. 5, 802-810] was 0.2 A. The electron-density map was well defined for the two independent molecules except for the N-terminal residue and the three C-terminal residues. Equivalent Calpha atoms of two independent molecules in the asymmetric unit were superposed by the least-squares method with root-mean-square deviations of 0.26 A. Reasonable structural differences were observed at a polypeptide segment having few intramolecular interactions. Highly flexible regions of the molecule were assigned from the structural differences between the two independent molecules in the crystal and the distribution of temperature factors along the polypeptide chain.


    Organizational Affiliation

    The Graduate University for Advanced Studies, Oho, Tsukuba, Ibaraki, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
FERREDOXIN I
A, B
95Equisetum arvenseN/A
Find proteins for P00235 (Equisetum arvense)
Go to UniProtKB:  P00235
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FES
Query on FES

Download SDF File 
Download CCD File 
A, B
FE2/S2 (INORGANIC) CLUSTER
Fe2 S2
NIXDOXVAJZFRNF-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 30.400α = 90.00
b = 57.400β = 78.70
c = 47.500γ = 90.00
Software Package:
Software NamePurpose
PROLSQrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 1993-09-24 
  • Released Date: 1994-01-31 
  • Deposition Author(s): Tsukihara, T.

Revision History 

  • Version 1.0: 1994-01-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance