Experimental Data Snapshot

  • Resolution: 2.30 Å
  • R-Value Free: 0.267 
  • R-Value Work: 0.213 

wwPDB Validation   3D Report Full Report

This is version 1.4 of the entry. See complete history


Sequestration of the active site by interdomain shifting. Crystallographic and spectroscopic evidence for distinct conformations of L-3-hydroxyacyl-CoA dehydrogenase.

Barycki, J.J.O'Brien, L.K.Strauss, A.W.Banaszak, L.J.

(2000) J Biol Chem 275: 27186-27196

  • DOI: https://doi.org/10.1074/jbc.M004669200
  • Primary Citation of Related Structures:  
    1F0Y, 1F12, 1F14, 1F17

  • PubMed Abstract: 

    l-3-Hydroxyacyl-CoA dehydrogenase reversibly catalyzes the conversion of l-3-hydroxyacyl-CoA to 3-ketoacyl-CoA concomitant with the reduction of NAD(+) to NADH as part of the beta-oxidation spiral. In this report, crystal structures have been solved for the apoenzyme, binary complexes of the enzyme with reduced cofactor or 3-hydroxybutyryl-CoA substrate, and an abortive ternary complex of the enzyme with NAD(+) and acetoacetyl-CoA. The models illustrate positioning of cofactor and substrate within the active site of the enzyme. Comparison of these structures with the previous model of the enzyme-NAD(+) complex reveals that although significant shifting of the NAD(+)-binding domain relative to the C-terminal domain occurs in the ternary and substrate-bound complexes, there are few differences between the apoenzyme and cofactor-bound complexes. Analysis of these models clarifies the role of key amino acids implicated in catalysis and highlights additional critical residues. Furthermore, a novel charge transfer complex has been identified in the course of abortive ternary complex formation, and its characterization provides additional insight into aspects of the catalytic mechanism of l-3-hydroxyacyl-CoA dehydrogenase.

  • Organizational Affiliation

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
A, B
310Homo sapiensMutation(s): 1 
UniProt & NIH Common Fund Data Resources
Find proteins for Q16836 (Homo sapiens)
Explore Q16836 
Go to UniProtKB:  Q16836
GTEx:  ENSG00000138796 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ16836
Sequence Annotations
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Resolution: 2.30 Å
  • R-Value Free: 0.267 
  • R-Value Work: 0.213 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50.44α = 90
b = 86.97β = 90
c = 168.29γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-09-27
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-03
    Changes: Database references
  • Version 1.4: 2024-02-07
    Changes: Data collection