1ESU

S235A MUTANT OF TEM1 BETA-LACTAMASE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Work: 0.162 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant.

Fonze, E.Charlier, P.To'th, Y.Vermeire, M.Raquet, X.Dubus, A.Frere, J.M.

(1995) Acta Crystallogr.,Sect.D 51: 682-694

  • DOI: 10.1107/S0907444994014496
  • Primary Citation of Related Structures:  1XPB

  • PubMed Abstract: 
  • beta-Lactamases are bacterial enzymes which catalyse the hydrolysis of the beta-lactam ring of penicillins, cephalosporins and related compounds, thus inactivating these antibiotics. The crystal structure of the TEM1 beta-lactamase has been determine ...

    beta-Lactamases are bacterial enzymes which catalyse the hydrolysis of the beta-lactam ring of penicillins, cephalosporins and related compounds, thus inactivating these antibiotics. The crystal structure of the TEM1 beta-lactamase has been determined at 1.9 A resolution by the molecular-replacement method, using the atomic coordinates of two homologous beta-lactamase refined structures which show about 36% strict identity in their amino-acid sequences and 1.96 A r.m.s. deviation between equivalent Calpha atoms. The TEM1 enzyme crystallizes in space group P2(1)2(1)2(1) and there is one molecule per asymmetric unit. The structure was refined by simulated annealing to an R-factor of 15.6% for 15 086 reflections with I >/= 2sigma(I) in the resolution range 5.0-1.9 A. The final crystallographic structure contains 263 amino-acid residues, one sulfate anion in the catalytic cleft and 135 water molecules per asymmetric unit. The folding is very similar to that of the other known class A beta-lactamases. It consists of two domains, the first is formed by a five-stranded beta-sheet covered by three alpha-helices on one face and one alpha-helix on the other, the second domain contains mainly alpha-helices. The catalytic cleft is located at the interface between the two domains. We also report the crystallographic study of the TEM S235A mutant. This mutation of an active-site residue specifically decreases the acylation rate of cephalosporins. This TEM S235A mutant crystallizes under the same conditions as the wild-type protein and its structure was refined at 2.0 A resolution with an R value of 17.6%. The major modification is the appearance of a water molecule near the mutated residue, which is incompatible with the OG 235 present in the wild-type enzyme, and causes very small perturbations in the interaction network in the active site.


    Organizational Affiliation

    Centre d'Ingénierie des Protéines, Unité de Cristallographie, Université de Liège, Institut de Physique, Belgium.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
BETA-LACTAMASE
A
263Escherichia coliGene Names: bla, blaT-3, blaT-4, blaT-5, blaT-6
EC: 3.5.2.6
Find proteins for P62593 (Escherichia coli)
Go to UniProtKB:  P62593
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Work: 0.162 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 41.931α = 90.00
b = 63.245β = 90.00
c = 88.746γ = 90.00
Software Package:
Software NamePurpose
X-GENdata scaling
X-PLORmodel building
X-PLORrefinement
X-PLORphasing
X-GENdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2000-05-03
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2017-10-04
    Type: Refinement description