1EO7

BACILLUS CIRCULANS STRAIN 251 CYCLODEXTRIN GLYCOSYLTRANSFERASE IN COMPLEX WITH MALTOHEXAOSE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.48 Å
  • R-Value Free: 0.296 
  • R-Value Work: 0.228 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.

Uitdehaag, J.C.van Alebeek, G.J.van Der Veen, B.A.Dijkhuizen, L.Dijkstra, B.W.

(2000) Biochemistry 39: 7772-7780

  • Primary Citation of Related Structures:  1EO5

  • PubMed Abstract: 
  • The enzymes from the alpha-amylase family all share a similar alpha-retaining catalytic mechanism but can have different reaction and product specificities. One family member, cyclodextrin glycosyltransferase (CGTase), has an uncommonly high transgly ...

    The enzymes from the alpha-amylase family all share a similar alpha-retaining catalytic mechanism but can have different reaction and product specificities. One family member, cyclodextrin glycosyltransferase (CGTase), has an uncommonly high transglycosylation activity and is able to form cyclodextrins. We have determined the 2.0 and 2.5 A X-ray structures of E257A/D229A CGTase in complex with maltoheptaose and maltohexaose. Both sugars are bound at the donor subsites of the active site and the acceptor subsites are empty. These structures mimic a reaction stage in which a covalent enzyme-sugar intermediate awaits binding of an acceptor molecule. Comparison of these structures with CGTase-substrate and CGTase-product complexes reveals three different conformational states for the CGTase active site that are characterized by different orientations of the centrally located residue Tyr 195. In the maltoheptaose and maltohexaose-complexed conformation, CGTase hinders binding of an acceptor sugar at subsite +1, which suggests an induced-fit mechanism that could explain the transglycosylation activity of CGTase. In addition, the maltoheptaose and maltohexaose complexes give insight into the cyclodextrin size specificity of CGTases, since they precede alpha-cyclodextrin (six glucoses) and beta-cyclodextrin (seven glucoses) formation, respectively. Both ligands show conformational differences at specific sugar binding subsites, suggesting that these determine cyclodextrin product size specificity, which is confirmed by site-directed mutagenesis experiments.


    Related Citations: 
    • Crystallographic Studies of the Interaction of Cyclodextrin Glycosyltransferase from Bacillus Circulans Strain 251 with Natural Substrates and Products
      Knegtel, R.M.A.,Strokopytov, B.,Penninga, D.,Faber, O.G.,Rozeboom, H.J.,Kalk, K.H.,Dijkhuizen, L.,Dijkstra, B.W.
      (1995) J.Biol.Chem. 270: 29256
    • X-Ray Structures Along the Reaction Pathway of Cyclodextrin Glycosyltransferase Elucidate Catalysis in the Alpha-Amylase Family
      Uitdehaag, J.C.M.,Mosi, R.,Kalk, K.H.,Van Der Veen, B.A.,Dijkhuizen, L.,Withers, S.G.,Dijkstra, B.W.
      (1999) Nat.Struct.Mol.Biol. 6: 432
    • The Cyclization Mechanism of Cyclodextrin Glycosyltransferase (CGTase) as Revealed by a Gamma-Cyclodextrin-Cgtase Complex at 1.8 Angstrom Resolution
      Uitdehaag, J.C.M.,Kalk, K.H.,Van Der Veen, B.A.,Dijkhuizen, L.,Dijkstra, B.W.
      (1999) J.Biol.Chem. 274: 34868
    • Structure of Cyclodextrin Glycosyltransferase Complexed with a Maltononaose Inhibitor at 2.6 Angstrom Resolution. Implications for Product Specificity
      Strokopytov, B.,Knegtel, R.M.A.,Penninga, D.,Rozeboom, H.J.,Kalk, K.H.,Dijkhuizen, L.,Dijkstra, B.W.
      (1996) Biochemistry 35: 4241


    Organizational Affiliation

    Center for Carbohydrate Bioengineering and Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (CYCLODEXTRIN GLYCOSYLTRANSFERASE)
A
686Bacillus circulansGene Names: cgt
EC: 2.4.1.19
Find proteins for P43379 (Bacillus circulans)
Go to UniProtKB:  P43379
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
GLC
Query on GLC

Download SDF File 
Download CCD File 
A
ALPHA-D-GLUCOSE
C6 H12 O6
WQZGKKKJIJFFOK-DVKNGEFBSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.48 Å
  • R-Value Free: 0.296 
  • R-Value Work: 0.228 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 111.648α = 90.00
b = 109.022β = 90.00
c = 64.677γ = 90.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
AMoREphasing
TNTrefinement
DENZOdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2000-11-22
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance