Crystal structure of a D-aminopeptidase from Ochrobactrum anthropi, a new member of the 'penicillin-recognizing enzyme' family.
Bompard-Gilles, C., Remaut, H., Villeret, V., Prange, T., Fanuel, L., Delmarcelle, M., Joris, B., Frere, J., Van Beeumen, J.(2000) Structure 8: 971-980
- PubMed: 10986464 
- DOI: https://doi.org/10.1016/s0969-2126(00)00188-x
- Primary Citation of Related Structures:  
1EI5 - PubMed Abstract: 
beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique.
Organizational Affiliation: 
Laboratorium voor Eiwitbiochemie en Eiwitengineering, Rijksuniversiteit-Gent, K.L. Ledeganckstraat, 35, B-9000, Gent, Belgium.