1DGM

CRYSTAL STRUCTURE OF ADENOSINE KINASE FROM TOXOPLASMA GONDII


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.214 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of adenosine kinase from Toxoplasma gondii at 1.8 A resolution.

Cook, W.J.DeLucas, L.J.Chattopadhyay, D.

(2000) Protein Sci 9: 704-707

  • DOI: 10.1110/ps.9.4.704
  • Primary Citation of Related Structures:  
    1DGM

  • PubMed Abstract: 
  • Human infection with Toxoplasma gondii is an important cause of morbidity and mortality. Protozoan parasites such as T. gondii are incapable of de novo purine biosynthesis and must acquire purines from their host, so the purine salvage pathway offers a number of potential targets for antiparasitic chemotherapy ...

    Human infection with Toxoplasma gondii is an important cause of morbidity and mortality. Protozoan parasites such as T. gondii are incapable of de novo purine biosynthesis and must acquire purines from their host, so the purine salvage pathway offers a number of potential targets for antiparasitic chemotherapy. In T. gondii tachyzoites, adenosine is the predominantly salvaged purine nucleoside, and thus adenosine kinase is a key enzyme in the purine salvage pathway of this parasite. The structure of T. gondii adenosine kinase was solved using molecular replacement and refined by simulated annealing at 1.8 A resolution to an R-factor of 0.214. The overall structure and the active site geometry are similar to human adenosine kinase, although there are significant differences. The T. gondii adenosine kinase has several unique features compared to the human sequence, including a five-residue deletion in one of the four linking segments between the two domains, which is probably responsible for a major change in the orientation of the two domains with respect to each other. These structural differences suggest the possibility of developing specific inhibitors of the parasitic enzyme.


    Organizational Affiliation

    Department of Pathology, University of Alabama at Birmingham, 35294, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
ADENOSINE KINASEA363Toxoplasma gondiiMutation(s): 1 
Gene Names: AK
EC: 2.7.1.20
UniProt
Find proteins for Q9TVW2 (Toxoplasma gondii)
Explore Q9TVW2 
Go to UniProtKB:  Q9TVW2
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ADN
Query on ADN

Download Ideal Coordinates CCD File 
D [auth A]ADENOSINE
C10 H13 N5 O4
OIRDTQYFTABQOQ-KQYNXXCUSA-N
 Ligand Interaction
ACY
Query on ACY

Download Ideal Coordinates CCD File 
E [auth A]ACETIC ACID
C2 H4 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download Ideal Coordinates CCD File 
C [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
MG
Query on MG

Download Ideal Coordinates CCD File 
B [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
ADNKi :  8900   nM  PDBBind
ADNKi:  8900   nM  BindingDB
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.214 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 47.55α = 90
b = 68.75β = 100.3
c = 57.29γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-11-29
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance