1D9H

Structural origins of the exonuclease resistance of a zwitterionic RNA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.6 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.187 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural origins of the exonuclease resistance of a zwitterionic RNA

Teplova, M.Wallace, S.T.Tereshko, V.Minasov, G.Symons, A.M.Cook, P.D.Manoharan, M.Egli, M.

(1999) Proc.Natl.Acad.Sci.USA 96: 14240-14245

  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are cu ...

    Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2'-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1 degrees C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3' ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3'-5' exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-A resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 A and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2'-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.


    Organizational Affiliation

    Department of Molecular Pharmacology, The Drug Discovery Program, Northwestern University Medical School, Chicago, IL 60611-3008, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsLengthOrganism
DNA/RNA (5'-D(*GP*CP*GP*TP*AP)-R(*(U31)P)-D(*AP*CP*GP*C)-3')A,B10N/A
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
U31
Query on U31
A, B
RNA LINKINGC12 H20 N3 O9 PU
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.6 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.187 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 25.170α = 90.00
b = 42.770β = 90.00
c = 45.180γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
AMoREphasing
X-PLORrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1999-12-02
    Type: Initial release
  • Version 1.1: 2008-01-03
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance