1D4R

29-mer fragment of human srp rna helix 6


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.264 
  • R-Value Observed: 0.264 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

The 2 A structure of helix 6 of the human signal recognition particle RNA

Wild, K.Weichenrieder, O.Leonard, G.A.Cusack, S.

(1999) Structure 7: 1345-1352

  • DOI: https://doi.org/10.1016/s0969-2126(00)80024-6
  • Primary Citation of Related Structures:  
    1D4R

  • PubMed Abstract: 

    The mammalian signal recognition particle (SRP) is an essential cytoplasmic ribonucleoprotein complex involved in targeting signal-peptide-containing proteins to the endoplasmic reticulum. Assembly of the SRP requires protein SRP19 to bind first to helix 6 of the SRP RNA before the signal-peptide-recognizing protein, SRP54, can bind to helix 8 of the RNA. Helix 6 is closed by a GGAG tetraloop, which has been shown to form part of the SRP19-binding site. The high-resolution (2.0 A) structure of a fragment of human SRP RNA comprising 29 nucleotides of helix 6 has been determined using the multiple anomalous dispersion (MAD) method and bromine-labelled RNA. In the crystal the molecule forms 28-mer duplexes rather than the native monomeric hairpin structure, although two chemically equivalent 11 base pair stretches of the duplex represent the presumed native structure. The duplex has highly distorted A-RNA geometry caused by the occurrence of several non-Watson-Crick base pairs. These include a 5'-GGAG-3'/3'-GAGG-5' purine bulge (which replaces the tetraloop) and a 5'-AC-3'/3'-CA-5' tandem mismatch that, depending on the protonation state of the adenine bases, adopts a different conformation in the two native-like parts of the structure. The structure also shows the 2'3'-cyclic phosphate reaction product of the hammerhead ribozyme cleavage reaction. The 29-mer RNA is the first RNA structure of the human SRP and provides some insight into the binding mode of SRP19. The observed strong irregularities of the RNA helix make the major groove wide enough and flat enough to possibly accommodate an alpha helix of SRP19. The variety of non-canonical base pairs observed enlarges the limited repertoire of irregular RNA folds known to date and the observed conformation of the 2'3'-cyclic phosphate containing Ade29 is consistent with the current understanding of the hammerhead ribozyme reaction mechanism.


  • Organizational Affiliation

    EMBL Grenoble Outstation, Grenoble, F-38042, France.


Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains LengthOrganismImage
29-MER OF MODIFIED SRP RNA HELIX 629N/A
Sequence Annotations
Expand
  • Reference Sequence
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains LengthOrganismImage
29-MER OF MODIFIED SRP RNA HELIX 6
B, C
29N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.264 
  • R-Value Observed: 0.264 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 42.98α = 90
b = 42.98β = 90
c = 231.42γ = 120
Software Package:
Software NamePurpose
MOSFLMdata reduction
TRUNCATEdata reduction
SOLVEphasing
CNSrefinement
CCP4data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-12-02
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-07
    Changes: Data collection, Database references, Derived calculations