1CMY

THE MUTATION BETA99 ASP-TYR STABILIZES Y-A NEW, COMPOSITE QUATERNARY STATE OF HUMAN HEMOGLOBIN


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3 Å

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

The mutation beta 99 Asp-Tyr stabilizes Y--a new, composite quaternary state of human hemoglobin.

Smith, F.R.Lattman, E.E.Carter Jr., C.W.

(1991) Proteins 10: 81-91

  • DOI: 10.1002/prot.340100202

  • PubMed Abstract: 
  • Carbonmonoxy hemoglobin Ypsilanti (beta 99 Asp-Tyr) exhibits a quaternary form distinctly different from any structures previously observed for human hemoglobins. The relative orientation of alpha beta dimers in the new quaternary form lies well outs ...

    Carbonmonoxy hemoglobin Ypsilanti (beta 99 Asp-Tyr) exhibits a quaternary form distinctly different from any structures previously observed for human hemoglobins. The relative orientation of alpha beta dimers in the new quaternary form lies well outside the range of values observed for normal unliganded and liganded tetramers (Baldwin, J., Chothia, C., J. Mol. Biol. 129:175-220, 1979). Despite this large quaternary structural difference between carbonmonoxy hemoglobin Ypsilanti and the two canonical structures, the new quaternary structure's hydrogen bonding interactions in the "switch" region, and packing interactions in the "flexible joint" region, show noncovalent interactions characteristic of the alpha 1 beta 2 contacts of both unliganded and liganded normal hemoglobins. In contrast to both canonical structures, the beta 97 histidine residue in carbonmonoxy hemoglobin Ypsilanti is disengaged from quaternary packing interactions that are generally believed to enforce two-state behavior in ligand binding. These features of the new quaternary structure, denoted Y, may therefore be representative of quaternary states that occur transiently along pathways between the normal unliganded, T, and liganded, R, hemoglobin structures.


    Organizational Affiliation

    Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
HEMOGLOBIN YPSILANTI (CARBONMONOXY) (ALPHA CHAIN)
A, C
141Homo sapiensMutation(s): 0 
Gene Names: HBA1, HBA2
Find proteins for P69905 (Homo sapiens)
Go to Gene View: HBA1 HBA2
Go to UniProtKB:  P69905
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
HEMOGLOBIN YPSILANTI (CARBONMONOXY) (BETA CHAIN)
B, D
146Homo sapiensMutation(s): 0 
Gene Names: HBB
Find proteins for P68871 (Homo sapiens)
Go to Gene View: HBB
Go to UniProtKB:  P68871
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
HEM
Query on HEM

Download SDF File 
Download CCD File 
A, B, C, D
PROTOPORPHYRIN IX CONTAINING FE
HEME
C34 H32 Fe N4 O4
KABFMIBPWCXCRK-RGGAHWMASA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3 Å
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 93.100α = 90.00
b = 93.100β = 90.00
c = 144.600γ = 120.00
Software Package:
Software NamePurpose
PROLSQrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1993-10-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance