1CM0

CRYSTAL STRUCTURE OF THE PCAF/COENZYME-A COMPLEX


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.223 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A.

Clements, A.Rojas, J.R.Trievel, R.C.Wang, L.Berger, S.L.Marmorstein, R.

(1999) EMBO J. 18: 3521-3532

  • DOI: 10.1093/emboj/18.13.3521

  • PubMed Abstract: 
  • The human p300/CBP-associating factor, PCAF, mediates transcriptional activation through its ability to acetylate nucleosomal histone substrates as well as transcriptional activators such as p53. We have determined the 2.3 A crystal structure of the ...

    The human p300/CBP-associating factor, PCAF, mediates transcriptional activation through its ability to acetylate nucleosomal histone substrates as well as transcriptional activators such as p53. We have determined the 2.3 A crystal structure of the histone acetyltransferase (HAT) domain of PCAF bound to coenzyme A. The structure reveals a central protein core associated with coenzyme A binding and a pronounced cleft that sits over the protein core and is flanked on opposite sides by the N- and C-terminal protein segments. A correlation of the structure with the extensive mutagenesis data for PCAF and the homologous yeast GCN5 protein implicates the cleft and the N- and C-terminal protein segments as playing an important role in histone substrate binding, and a glutamate residue in the protein core as playing an essential catalytic role. A structural comparison with the coenzyme-bound forms of the related N-acetyltransferases, HAT1 (yeast histone acetyltransferase 1) and SmAAT (Serratia marcescens aminoglycoside 3-N-acetyltransferase), suggests the mode of substrate binding and catalysis by these enzymes and establishes a paradigm for understanding the structure-function relationships of other enzymes that acetylate histones and transcriptional regulators to promote activated transcription.


    Organizational Affiliation

    The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
P300/CBP ASSOCIATING FACTOR
B, A
168Homo sapiensMutation(s): 0 
Gene Names: KAT2B (PCAF)
EC: 2.3.1.48
Find proteins for Q92831 (Homo sapiens)
Go to Gene View: KAT2B
Go to UniProtKB:  Q92831
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
COA
Query on COA

Download SDF File 
Download CCD File 
A, B
COENZYME A
C21 H36 N7 O16 P3 S
RGJOEKWQDUBAIZ-IBOSZNHHSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
COAIC50: 41910 nM (100) BINDINGDB
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.223 
  • Space Group: P 64
Unit Cell:
Length (Å)Angle (°)
a = 97.000α = 90.00
b = 97.000β = 90.00
c = 77.850γ = 120.00
Software Package:
Software NamePurpose
DENZOdata reduction
AMoREphasing
CNSrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1999-07-06
    Type: Initial release
  • Version 1.1: 2008-04-26
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance